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A B S T R A C T

One-shirt-size policy cannot handle poverty issues well since each area has its unique challenges, while having a custom-made policy for each area 
separately is unrealistic due to limitation of resources as well as having issues of ignoring dependencies of characteristics between different areas. 
In this work, we propose to use Bayesian hierarchical models which can potentially explain the data regarding income and other poverty-related 
variables in the multi-resolution governing structural data of Thailand. We discuss the journey of how we design each model from simple to more 
complex ones, estimate their performance in terms of variable explanation and complexity, discuss models’ drawbacks, as well as propose the 
solutions to fix issues in the lens of Bayesian hierarchical models in order to get insight from data.

We found that Bayesian hierarchical models performed better than both complete pooling (single policy) and no pooling models (custom-made 
policy). Additionally, by adding the year-of-education variable, the hierarchical model enriches its performance of variable explanation. We found 
that having a higher education level increases significantly the households’ income for all the regions in Thailand. The impact of the region in the 
households’ income is almost vanished when education level or years of education are considered. Therefore, education might have a mediation 
role between regions and the income. Our work can serve as a guideline for other countries that require the Bayesian hierarchical approach to 
model their variables and get insight from data.

1. Introduction

1.1. Related works

Before solving poverty and inequality issues, one needs a tool to measure the degree of how severe the issues in a given area are. 
In the past, poverty was about lacking of income. However, the concept of poverty is complex and multidimensional [1,2], which 
implies that solving only monetary problems is not enough to alleviate the issues of poverty.

Therefore, the Multidimensional Poverty index (MPI) in [3,4] was developed and used by United Nations Development Pro-

gramme (UNDP) as a standard way to measure poverty in multidimensions such as living standard, health, education, etc. The MPI 
indices from nations around the world have been reported annually by UNDP. In the aspect of inequality, the well-known index that 
is typically used for measuring income inequality is the Gini coefficient [5]. The index represents the distribution of resources among 
people. In [5], the authors used the Gini index to measure income inequality in Sub-Saharan Africa. The work in [6] used Gini index 
as an income inequality measure to find association between a number of COVID19 cases and income inequality in USA. Instead of 
the Gini coefficient, the work in [7] proposed the use of the network density of income gaps (edges represent significant gaps) to 
measure income inequality among different occupations.
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Even though these indices provide rich information regarding poverty and income inequality in each area, they never provide 
the information of resolution of poverty issues; given multiple areas, it is impossible to tell from MPI whether these areas share 
similar issues and need only a single policy to solve poverty. To address this gap, the work in [8] uses both minimum description 
length (MDL) and Gaussian Mixture Models [9–11] to find optimal multiresolution partitions that can place a single policy for each 
partition since each one represents an area that have a similar model of issues. However, these works cannot be used to provide 
insights regarding dependencies of issues between different area resolution levels. Does income variable in the national level affects 
income variables in provinces or lower levels? The next section provides the reasons of using Bayesian hierarchical models in our 
work.

1.2. Relevance of Bayesian hierarchical models

One of the approaches to model policies is to use Bayesian’s statistics and modeling, which is widely used to model public policies 
in government setting [12,13] as well as public opinions [14,15]. Specifically, for example, in [13], Bayesian approaches were used 
to evaluate public programs, while, in [15], Bayesian approaches were used to evaluate internet public opinions.

In this work, we propose to use Bayesian hierarchical models to analyze variables that are related to poverty and inequality from 
a population dataset of Thai households.

Some datasets are collected with an inherent multilevel structure, for example, households within a region of a country. Then, 
hierarchical modeling is a direct way to include clusters at all levels of a phenomenon, without being overwhelmed with the problems 
of overfitting. At a practical level, hierarchical models are flexible tools combining partial pooling of inferences. They have been 
successfully involved in various practical problems, including biomedicine [16,17], genetics [18,19], ecology [20,21], psychology 
[22], among others. We refer to [23] for a review on Bayesian modeling and a further list of their applications, including Bayesian 
hierarchical models.

The traditional alternatives to hierarchical modeling are complete pooling, in which differences between groups are ignored, 
and no pooling, in which data from different sources are analyzed separately. As we shall discuss, both these approaches present 
problems at a conceptual level and to explain some data. However, the extreme alternatives can be useful as preliminary estimates.

1.3. Motivation

Poverty is one of the most important issues that mankind faces [1]. It is one of the main root causes that harms several aspects 
of society such as economy development [24], education [25], healthcare systems [26], etc. For each year, there were millions of 
human deaths causing by poverty [27,1]. Especially, when the COVID-19 pandemic occurred, deprived people were the ones who 
suffered the most in servery aspects including casualty [28,6]. To combat poverty issues, a government needs appropriate policies 
to solve them [29,30]. With the proper policies and sufficient resources, poverty can be alleviated effectively. However, finding 
the right policy is a non-trivial task due to the complexity of issues and unique characteristics of regions. For instance, in a similar 
problem, one solution in a specific region might not be able to solve it in another region even though they have similar characteristics 
in many aspects [31,32].

One-shirt-size policy is a popular way to solve an issue by policy makers since it is simple to implement and typically uses less 
resources than a custom-made policy that is designed for a specific region. Nevertheless, one-shirt-size policy is unable to handle 
issues in all regions of a country effectively since each region might have their own unique socioeconomic context or other issues of 
poverty [33–35,8]. On the other hand, making a specific policy for each region to solve their unique problems is impossible due to 
the limitation of time and resources [8].

1.4. Contribution

To find an optimal solution between the two extremes of one-shirt-size and custom-made policies, in this work, we propose to use 
Bayesian hierarchical models [36,37] to find a proper model that effectively explains target variables (e.g. income, debt, savings, etc.) 
related to poverty. To the best of our knowledge, there is no work in the literature that makes use of Bayesian hierarchical models 
to analyze variables of poverty in Thailand. For some variables, we found that complete pooling (representing one-shirt-size policy) 
and no pooling (representing custom-made policy) cannot explain a target variable while hierarchical models can, which represents 
the middle ground between these two extremes. Moreover, since Bayesian hierarchical models are able to extract dependencies of 
issues between different area resolution levels, the models can provide the insight regarding making a policy that takes into account 
the common ground and uniqueness between different governing layers (e.g. a group of village shares the same issues of education 
but each village has its unique income issues.) The analyses and results of our work can be used as a role model for the analysis in 
other countries.

The rest of the article is organized as follows. In Section 2 we explain our methodology to select the variables studied in this 
work, how simple and complex models interact between them, and the criterion used to compare different models. In Section 3

we introduce the hierarchical model as a trade-off between no pooling and complete pooling models. In Section 4 we present a 
hierarchical model that incorporates two non-nested clusters. Section 5 is devoted to Bayesian hierarchical regression. In Section 6
2

we discuss the principal results observed throughout this work. Finally, Section 7 presents the conclusions.
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2. Methodology

With the proliferation of Bayesian methods (see [23] for a list of open Bayesian software programs), they have become easier 
to build and implement than to understand what they are doing. In an attempt to narrow this gap, in this work we present a 
comprehensive framework for hierarchical models. Thus, we do not only show how to implement these models, but also how to 
interpret the parameters according to the level where they belong in the hierarchy and their relation with other parameters.

Instead of starting directly with the hierarchical models, we begin with the extreme cases of no pooling and complete pooling. 
It is only after analyzing their implications and their lack to explain adequately certain aspects of the data, that we introduce the 
hierarchical models as a way to mitigate these problems. Thus, every time we introduce a new hierarchical model is always as an 
extension of a previous one.

Noninformative priors (also known as reference priors or objective priors) are notoriously difficult to derive for many hierarchical 
models. Thus, throughout this work, we present an approach in which simpler models are used for prior specification in more complex 
models. This contrasts with the most common approach to prior specification in which a prior distribution is selected because it has 
been previously used in the literature. Based on the assumption that the community of people using that prior is doing it for a good 
reason. However, as pointed out by [38], most of these priors have been chosen for specific problems and might be inappropriate for 
others. Furthermore, as commented by [39]:

There’s an illusion sometimes that default procedures are more objective than procedures that require user choice, such as 
choosing priors. If that’s true, then all “objective” means are that everyone does the same thing. It carries no guarantees of 
realism or accuracy.

As commented by [40], hierarchical models allow a more “objective” approach to inference by estimating the parameters of prior 
distributions from data rather than requiring them to be specified using subjective information. Moreover, in hierarchical models 
where priors depend on hyperparameter values that are data-driven avoids the direct problems linked to double-dipping [23]. 
Therefore, our approach follows the tendency by part of the Bayesian community to move from noninformative priors [36,39,41,42]. 
We do not claim that the proposed approach is optimal. Instead, we make the more modest claim that it is useful for practical 
purposes.

To show the potential of our approach, in Appendix C we present a brief simulation study. However, it is important to emphasize 
that performing a simulation study should not be treated as a simple task that can be incorporated easily. There are just too many 
variables, models and factors without a trivial answer: what is the distribution to be used for simulating the data? which aspects 
of the model are we interested to study? are we interested in the robustness of the methods when outliers are presented? their 
computational efficiency? or their behavior when the assumed distribution in the model does not correspond with the distribution of 
the data? how many observations should be simulated for the training phase? how many for the testing phase? the distribution for 
both phases should be maintained the same? Many decisions should be made for an appropriate simulation study. Thus, a complete 
simulation analysis is out of the scope and aim of this article. For seek of brevity the simulation studies explore the Bayesian 
hierarchical models with one cluster and the Bayesin hierarchical regression models.

2.1. Data and related information

The dataset used throughout this work has been collected in 2022 by Thai government agencies. The main purpose of this dataset 
is for supporting government policy makers to calculate MPI to support poverty alleviation policy making in the Thai People Map and 
Analytics Platform project (www.TPMAP.in.th) [8]. The original dataset has 12,983,145 observations (each one corresponding to a 
household). However, there were 569 households that declared having no-income, which represents 0.0044% of the observations. 
We consider this percentage negligible and do not consider them for further analyses. The number of households consulted for each 
province goes from 44,012 up to 645,433, then, for all practical purposes, we can ignore the uncertainty within each province.

2.2. Comparison of models

Since different models are implemented for the same data and variables, we need to develop a methodology that allows us to 
compare them. For this purpose, we considered the Widely Applicable Information Criterion (WAIC) [43], renamed in [44] as the 
Watanabe-Akaike Information Criterion. This information criterion allows a fair comparison between models of different complexity. 
Compared to other information criteria like the Akaike Information Criterion (AIC) [45], WAIC averages over the posterior distri-

bution rather than conditioning on a point estimate (like the maximum likelihood estimator), making it a more suitable criterion 
for Bayesian models. Moreover, AIC is defined relative to the maximum likelihood estimate and so is inappropriate for hierarchical 
models.

It is important to point out that many non-Bayesian models are equivalent to Bayesian models, usually when noninformative 
vague priors are considered, and thus for such models the WAIC can also be calculated, which allows a direct comparison between 
non-Bayesian and Bayesian models. However, other strategies can be considered as well, such as calculating a loss function, as could 
be the negative of the log-likelihood, over a testing data set or through cross-validation. Unfortunately, some of these techniques like 
3

cross-validation might required a lot of computational resources, especially in the extreme case of leaving-one-out cross validation. 

https://www.tpmap.in.th/about_en
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Fig. 1. Boxplots of the 10 poverty-related variables affecting the largest percentage of households in Thailand.

Thus, since it is not restrictive computationally and for its suitability for Bayesian hierarchical models, in this article we focus our 
attention into the WAIC for the comparison of models

We emphasize that the WAIC is just another statistical summary of our models, and it is not, in any way, a substitute of an 
appropriate analysis of the models and their results. If we find that the model does not fit for its intended purposes, we are obliged 
to search for a new model that fits. Then, understanding different aspects of the models and their implications must be the principal 
guide for their selection and comparison. See [46] for further discussion on Bayesian predictive model assessment, selection, and 
comparison methods. In Appendix A.1 we provide further details about the WAIC.

2.3. Variables to analyze

For its direct relation with poverty, we exemplify our methodology throughout this work considering the monthly average income 
in households. However, this approach is suitable to be applied to a widely variety of variables. To decide the variables where to 
apply our methodology, we first calculated the percentage of households in each province affected by the variables considered in the 
dataset. In Fig. 1, we present boxplots for the 10 issues with the largest percentage.

Due to the large percentage of households affected by (having) formal debt, smoking, having no savings, and alcohol consumption, 
as well as their large variance between provinces, we also analyzed these variables with the different models presented in this work.

3. Hierarchical model with one cluster: income per region

3.1. No pooling model and complete pooling model

3.1.1. No pooling model

Let 𝑌𝑖𝑗 be the average household in the province 𝑖, which belongs to the region 𝑗, each region with 𝑛𝑗 observations. We consider 
6 regions for Thailand: Northern Thailand, Northeast Thailand, East Thailand, Central Thailand, Western Thailand and Southern 
Thailand.

Before jumping directly into our hierarchical model, we first consider separate independent models for each region. Thus, each 
region has its own mean 𝜃𝑗 and its own variance 𝜎2

𝑗
. We assume that 𝑌𝑖𝑗 |𝜃𝑗 , 𝜎2

𝑗
∼ (𝜃𝑗 , 𝜎2

𝑗
),1 𝑗 = 1, … , 𝐽 . This model is represented 

graphically on the left of Fig. 2. For a simple model like this, we can consider vague noninformative priors without any harm, thus 
we use the well-known noninformative prior2

𝑝(𝜽,𝝈2) ∝
𝐽∏

𝑗=1

1
𝜎2
𝑗

1ℝ(𝜃𝑗 )1 (0,∞)(𝜎2
𝑗
).

1  (𝜃, 𝜎2) denotes a normal distribution with location 𝜃 and scale 𝜎.
2 1𝐴(𝑥) denotes the indicator function, defined as

1𝐴(𝑥) =

{
1 if 𝑥 ∈𝐴

0 if 𝑥 ∉𝐴
4

for some set 𝐴 where 𝑥 is properly defined.
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Fig. 2. Graphical representation of the considered models. Left: Separate independent models for each region, if we add the restrictions 𝜃𝑗 = 𝜃 and 𝜎2
𝑗
= 𝜎2 for all 𝑗, 

then we get the complete pooling model. Center: Hierarchical model, where the regional means share a common structure, yet allowing them to be different, but the 
constraint of equal variance is still present. Right: Hierarchical model imposing a common structure for both, the regional means and the within-region variances.

It is not difficult to prove that the conditional posterior distributions for each 𝜃𝑗 and 𝜎2
𝑗

are given by3

𝜃𝑗 |𝝈2,𝐘 ∼ (𝑌⋅𝑗 , 𝜎̄2
𝑗
),

𝜎2
𝑗
|𝜽,𝐘 ∼ Inverse-𝜒2(𝑛𝑗 , 𝑣𝑗 ),

where

𝑌⋅𝑗 =
1
𝑛𝑗

𝑛𝑗∑
𝑖=1

𝑌𝑖𝑗 , 𝜎̄2
𝑗
=

𝜎2
𝑗

𝑛𝑗
, and 𝑣𝑗 =

1
𝑛𝑗

𝑛𝑗∑
𝑖=1

(𝑌𝑖𝑗 − 𝜃𝑗 )2.

Which makes it straightforward to simulate from the joint posterior distribution using Gibbs sampling [47].

On the top left of Fig. 3, we present the estimated mean for each region, 𝜃𝑗 , with a credible interval of 0.95 posterior probability. 
We observe that, since we considered noninformative priors, the estimations are centered on the observed regional averages. Note 
also that, because the regions share no information between them, the credible intervals are large, especially for regions with few 
provinces. On the top right, we present a similar plot for the standard deviation for each region, 𝜎𝑗 . On the bottom, we present 
credible intervals for the average monthly income in each region. We present these credible intervals with the observed average for 
the provinces belonging to the region.

3.1.2. Complete pooling model

We can observe in Fig. 3 that the intervals overlap for most of the regions. This overlapping suggests that all the parameters might 
be estimating the same quantity. In fact, it is highly unlikely that the regions are independent between them, which makes difficult 
to justify an independent model for each one. Thus, we can consider the complete pooling model, in which all the regional means, 
𝜃𝑗 , and their variances, 𝜎2

𝑗
, are equal to some common values 𝜃 and 𝜎2, respectively. That is, for the complete pooling model, we 

assume that 𝑌𝑖𝑗 |𝜃, 𝜎2 ∼ (𝜃, 𝜎2). Similar to the no pooling model, the complete pooling is represented by the graph on the left of 
Fig. 2, with the constraints that 𝜃𝑗 = 𝜃 and 𝜎2

𝑗
= 𝜎2 for all 𝑗 = 1, … , 𝐽 .

For this model we still consider the noninformative prior distribution for 𝜃 and 𝜎2,

𝑝(𝜃, 𝜎2) ∝ 1
𝜎21ℝ(𝜃)1 (0,∞)(𝜎2).

It is not difficult to prove that the conditional posterior distribution of 𝜃 is given by 𝜃|𝜎2, 𝐘 ∼ (𝑌⋅⋅, 𝜑2), where

𝑌⋅⋅ =

∑𝐽

𝑗=1
𝑌⋅𝑗

𝜎̄2
𝑗∑𝐽

𝑗=1
1
𝜎̄2
𝑗

, 𝜑2 = 1∑𝐽

𝑗=1
1
𝜎̄2
𝑗

, and 𝜎̄2
𝑗
= 𝜎2

𝑛𝑗
,

while the conditional posterior distribution of 𝜎2 is given by 𝜎2|𝜃, 𝐘 ∼ Inverse-𝜒2(𝑛, ̂𝜎2), with

𝑛 =
𝐽∑

𝑗=1
𝑛𝑗 , and 𝜎̂2 = 1

𝑛

𝐽∑
𝑗=1

𝑛𝑗∑
𝑖=1

(𝑌𝑖𝑗 − 𝜃)2.

Once again, having access to the conditional posterior distributions allows us to simulate from the joint posterior distribution using 
Gibbs sampling.

We present in Fig. 4 the analogous results of Fig. 3 for the complete pooling model. Comparing both Figures, we observe much 
narrower intervals (also calculated at a 0.95 posterior probability), this is because now we are using all the observations to estimate 
the same common quantities, reducing the uncertainty significantly. However, we observe that the common mean 𝜃 can barely 
5

3 Inverse-𝜒2(𝜈, 𝜎2) denotes a scaled inverse 𝜒2 distribution with 𝜈 degrees of freedom and scale 𝜎2.
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Fig. 3. Results considering independent separate models for each region. On the top row we show the regional mean, 𝜃𝑗 (left) and the regional standard deviation, 𝜎𝑗

(right). On the bottom we show the province mean.

explain the mean of a few regions, being an unreliable estimate for the regions with the largest and smallest means. We can also 
observe that the estimator of the common within-region deviation is not centered around the average of the observed sample 
deviations, but upward. This is because now that we have constraint the regional means to be all the same, the only way to explain 
the variation throughout the observations is by estimating a higher value for the common deviation 𝜎. Note also, on the bottom row 
of Fig. 4, that all the provinces in Northern Thailand are on the below half of the credible interval, while all the provinces in Eastern 
Thailand are above. We can conclude from all these observations that a complete pooling model is inappropriate.

3.2. Hierarchical model with common within-cluster variance

Because considering independent models for each region seems difficult to justify and we observe a poor performance for the com-

plete pooling model, we consider as a better approach a model that makes a trade-off between these two extreme cases. A hierarchical 
model achieves this compromise.

Instead of adding a hierarchical structure to all the parameters, we propose to add it to one parameter first, and consider more 
complex models only as suggested by the data after analyzing the results of the previous model. For this reason, we maintain a 
common within-region variance 𝜎2, but consider different regional means, 𝜃𝑗 . However, these means are not independent, instead 
they share a common structure. From a statistical perspective this means to abandon the noninformative prior for 𝜃𝑗 and consider a 
6

distribution that depends on some hyperparameters, as it is represented by the graph in the center of Fig. 2.
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Fig. 4. Results considering the complete pooling model for all the regions. On the top row we show the regional mean, 𝜃𝑗 (left) and the regional standard deviation, 
𝜎𝑗 (right). On the bottom we show the province mean.

For the simplicity of a conjugate model [42], we consider the prior 𝜃𝑗 |𝜇, 𝜏2 ∼ (𝜇, 𝜏2), 𝑗 = 1, … , 𝐽 . In this model, 𝜇 represents 
the national average of the monthly income and 𝜏 represents the between-regions deviation. For the within-regions variance, 𝜎2 we 
still consider the noninformative prior

𝑝(𝜎2) ∝ 1
𝜎21 (0,∞)(𝜎2).

To complete our model, we must assign prior distributions for 𝜇 and 𝜏 . However, we must be careful since the usual noninfor-

mative distributions for location and scale parameters might lead to the non existence of the posterior distributions. For example, 
using the usual noninformative prior of a variance parameter for 𝜏2, 𝑝(𝜏2) ∝ 1

𝜏2
1 (0,∞)(𝜏2) yields an improper posterior distribution. 

Meanwhile, the vague prior

𝑝(𝜏2) ∝1 (0,∞)(𝜏2)

generates a proper posterior distribution, thus we use this prior for 𝜏2. For 𝜇, we use the usual noninformative prior

𝑝(𝜇) ∝1ℝ(𝜇).

In Appendix A.2, we present an empirical approach (developed in [42]) to estimate these parameters, and explore in more detail 
7

the qualitative implications of the priors and the values taken by the parameters in the hierarchical models.
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With this model, the following conditional distributions for the parameters can be deduced [42].

Conditional posterior for 𝜃𝑗

𝜃𝑗 |𝜇, 𝜏2, 𝜎2,𝐘 ∼ (𝜃̂𝑗 , 𝑉𝜃𝑗
),

where

𝜃̂𝑗 =

1
𝜎̄2
𝑗

𝑌⋅𝑗 +
1
𝜏2

𝜇

1
𝜎̄2
𝑗

+ 1
𝜏2

, and 𝑉𝜃𝑗
= 1

1
𝜎̄2
𝑗

+ 1
𝜏2

. (1)

Conditional posterior for 𝜇

𝜇|𝜽, 𝜏2, 𝜎2,𝐘 ∼ (𝜇̂, 𝜏2∕𝐽 ),

where 𝜇̂ = 1
𝐽

∑𝐽

𝑗=1 𝜃𝑗 .

Conditional posterior for 𝜎2

𝜎2|𝜽, 𝜇, 𝜏2,𝐘 ∼ Inverse-𝜒2(𝑛, 𝜎̂2),

where 𝑛 =
∑𝐽

𝑗=1 𝑛𝑗 , and

𝜎̂2 = 1
𝑛

𝐽∑
𝑗=1

𝑛𝑗∑
𝑖=1

(𝑌𝑖𝑗 − 𝜃𝑗 )2.

Conditional posterior for 𝜏2

𝜏2|𝜽, 𝜇, 𝜎2,𝐘 ∼ Inverse-𝜒2(𝐽 − 1, 𝜏2),

where

𝜏2 = 1
𝐽 − 1

𝐽∑
𝑗=1

(𝜃𝑗 − 𝜇)2.

As we did with the previous two models, we present in Fig. 5 the estimated mean for each region, 𝜃𝑗 , the estimated common 
within-region deviation 𝜎, and the average province monthly income, all of them with their respective credible intervals of 0.95 
posterior probability. For the regional means, we can observe that the uncertainty is considerable less that when we considered 
independent analyses (see Fig. 3) without having a poor performance as the complete pooling model. Also, since we accept different 
means for each region, now the common variance is not overestimated. However, we can observe that a common variance is infeasible 
to explain the observed variability for most of the regions.

3.3. Hierarchical model varying within-cluster variance

Because a common within-region variance 𝜎2 seems infeasible, we can impose a hierarchical level to it, similarly as we did 
with the regional means. Thus, we allow each region to have its own variance 𝜎2

𝑗
, but all of them sharing a common structure. For 

simplicity of a conjugate model, we consider the following prior distribution

𝜎2
𝑗
|𝜈, 𝜌2 ∼ Inverse-𝜒2(𝜈, 𝜌2).

This model is represented graphically on the right of Fig. 2. These graphical representations, called Bayesian networks, meet 
two objectives. First, they visualize easily the hierarchical relations between variables, which helps with the interpretation of the 
parameters and the understanding of the model. Second, they allow us to use 𝑑-separation rules [48] to deduce the conditional 
independence between the parameters. We suggest [49] and [50] for gentle introductions to Bayesian networks and 𝑑-separation.

Consider, for example, the graph presented on the right of Fig. 2, while a priori 𝜃𝑗 is independent of 𝜎2
𝑗
, we can see that condition-

ing on 𝐘 creates a dependence between both parameters, that is 𝜃𝑗 ⟂⟂ 𝜎2
𝑗
, but 𝜃𝑗 ∕⟂⟂ 𝜎2

𝑗
|𝐘. However, if we condition on both 𝐘 and 𝜎2

𝑗
, 

𝜃𝑗 is independent of 𝜈 and 𝜌2. This implies that the full conditional posterior of 𝜃𝑗 is exactly the same as in the model of Section 3.2, 
which assumes the same variance for all the regions (with the minor change of defining 𝜎̄2

𝑗
= 𝜎2

𝑗
∕𝑛𝑗 instead of 𝜎̄2

𝑗
= 𝜎2∕𝑛𝑗 ). Using the 

same reasoning, it is easy to see that the posterior distributions of 𝜇 and 𝜏2 are also the same as those presented in Section 3.2.

Therefore, we only need to calculate the posterior distributions of 𝜎2
𝑗
, 𝜈 and 𝜌2. Due to the conjugacy property of the model, it is 

not difficult to prove (see [42]) that

𝜎2
𝑗
|𝜽, 𝜈, 𝜌2,𝐘 ∼ Inverse-𝜒2(𝜈𝑗 , 𝜎̂2

𝑗
),
8

where
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Fig. 5. Results considering a hierarchical model. We allow the mean of each region to vary while maintaining the same within-region variance 𝜎2 . On the top row we 
show the regional mean, 𝜃𝑗 (left) and the regional standard deviation, 𝜎𝑗 (right). On the bottom we show the province mean.

𝜈𝑗 = 𝜈 + 𝑛𝑗 , 𝜎̂2
𝑗
=

𝜈𝜌2 + 𝑛𝑗𝑣𝑗

𝜈 + 𝑛𝑗
,and 𝑣𝑗 =

1
𝑛𝑗

𝑛𝑗∑
𝑖=1

(𝑌𝑖𝑗 − 𝜃𝑗 )2.

To complete our model, we must assign prior distributions for 𝜌2 and 𝜈. Note that, considering the Bayesian network associated 
to the model, and 𝑑-separation, it is easy to see that once we condition on 𝝈𝟐, 𝜌2 is independent of all the other variables and 
parameters of the model, except for 𝜈. For 𝜌2, we can prove (see Appendix A.3.1) that the vague prior

𝑝(𝜌2) ∝ 1
𝜌2
1 (0,∞)(𝜌2)

yields the conditional posterior4

𝜌2|𝝈𝟐, 𝜈 ∼ Gamma

(
𝐽𝜈

2
,
𝐽𝜈

2𝜌̂2

)
,

where
9

4 Gamma(𝛼, 𝛽) denotes a gamma distribution with shape parameter 𝛼 and rate parameter 𝛽 .
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𝜌̂2 = 𝐽∑𝐽

𝑗=1
1
𝜎2
𝑗

.

Unfortunately, the conditional posterior of 𝜈 is far more complicated, let be 𝜔 = 𝜈∕2, then

𝑝(𝜈|𝝈2, 𝜌2) ∝ 𝑝(𝜈) 𝜔𝐽𝜔

Γ𝐽 (𝜔)
(𝜌2)𝐽𝜔 exp

{
−𝐽𝜔

𝜌2

𝜌̂2

} 𝐽∏
𝑗=1

(𝜎2
𝑗
)−𝜔.

This is an intricate expression, which gives little guide for the selection of a prior distribution for 𝜈 yielding a proper known 
distribution.

In general, it remains challenging to propose noninformative priors for the degrees of freedom of a distribution. In [51] the 
authors present different proposals for the degrees of freedom of a 𝑡-distribution under certain conditions. Notably, in [38], the 
authors present a process to build objective priors, which they called Penalised Complexity or PC priors. Let as it be, these approaches 
do not necessarily applied for the degrees of freedom of an inverse 𝜒2 distribution. Thus, in this work we consider three different 
approaches to propose a prior distribution for 𝜈.

3.3.1. Estimating 𝜌2 and 𝜈: the hierarchical model with fixed 𝜈̂
Because 𝜎2

𝑗
|𝜈, 𝜌2 ∼ Inverse-𝜒2(𝜈, 𝜌2), we can use the method of moments to estimate 𝜌2 and 𝜈. Let be 𝐸𝑠2 the average of the 

observed sample within-group variances, 𝑠21, … , 𝑠2
𝐽

, and 𝑉𝑠2 their variance, using the method of moments (see Appendix A.3.2), we 
get the following estimates

𝜈̂ =
2(𝐸𝑠2 )2

𝑉𝑠2
+ 4 (2)

and

𝜌̂2 =

(
2(𝐸𝑠2 )2 + 2𝑉𝑠2

2(𝐸𝑠2 )2 + 4𝑉𝑠2

)
𝐸𝑠2 (3)

Thus, the first option considered in this work is to fix the value of 𝜈 to its empirical estimator.

3.3.2. Using a vague improper prior for 𝜈
Setting 𝜈 to a fix value like 𝜈̂ ensures us that the posterior distribution would exist for all the parameters, except 𝜈 which is no 

longer modeled as a random variable. This means that, setting the value of 𝜈 to a fix value, eliminates the uncertainty that we have 
on that parameter, and makes our model overconfident because it acts as if 𝜈̂ would be the real value of 𝜈. For this reason, the second 
approach in this work is to consider a vague prior for 𝜈.

For modeling the degrees of freedom of a multivariate 𝑡-distribution, [52] proposed the prior 𝑝(𝜈) ∝ (𝜈 + 1)−3∕2, while [53]

proposed to use 𝑝(𝜈) ∝ 𝜈−2. Thus, we proposed a prior for 𝜈 of the form 𝑝(𝜈) ∝ 𝜈−ℎ1 (0,∞)(𝜈), fixing the value of ℎ > 0. We have 
seen in simulations that large values of ℎ tend to make each within-variance, 𝜎2

𝑗
, to concentrate in the observed sample variance 

𝑠2
𝑗

at the cost of increasing the uncertainty in their estimates. Meanwhile, smaller values for ℎ have the opposite effect, generating 
models that are closer to the case where a single common within-variance, 𝜎2, is considered for all the groups. However, even 
while it seems as a reliable approach in the simulations, we do not have any guarantee that the posterior distribution would exist 
using these improper priors. For example, the limit case ℎ → 0, corresponding with the prior 𝑝(𝜈) = 1 (0,∞)(𝜈), generates an improper 
monotonically increasing posterior for 𝜈, which makes all the within-variances to concentrate in a common-variance quantity. In this 
work we present results for ℎ = 3, 2, 1.

Note that performing Gibbs sampler for this approach is still possible. To sample from the distribution of 𝜈, we could use a grid 
of values and sample them with a probability proportional to the (conditional) posterior of those values. However, this requires the 
extra-effort of finding an appropriate grid.

3.3.3. Using a regularizing prior for 𝜈
Because setting the value of 𝜈 to a fix value, 𝜈̂, eliminates the uncertainty on 𝜈, and using an improper distribution does not give 

guarantee for the existence of the posterior distribution, the third option that we propose is to use a regularizing prior for 𝜈.

A regularizing prior is a prior distribution whose parameters are learned from the data, which might prevent overfitting [39,41]. 
With this approach, we maintain the uncertainty on 𝜈 with the guarantee of the existence of the posterior distribution. In this work, 
we consider an exponential distribution whose rate parameter is set at 1∕𝜈̂, but other distributions might be considered as well.

As commented previously, using Gibbs sampler is still feasible, but requires an extra-effort of finding an appropriate grid of 
values to sample from. However, we can use other Monte Carlo techniques to simulate from the joint posterior distribution. For this 
purpose, we used No U-Turn Sampler (NUTS) [54] which is a Hamiltonian Monte Carlo technique [55], implemented in the library
10

PyMC (formerly PyMC3) [56].
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Table 1

WAIC for each one of the models previously discussed and all the selected variable. We show in bold the model 
with the lowest WAIC value for each variable, being the preferred model according to this criterion.

No Complete Hierarchical Hierarchical

Pooling Pooling common 𝜎2 fixed 𝜈̂

Monthly Income 1382.01 1410.13 1386.44 1379.21

Percentage with Formal Debt -216.66 -183.14 -217.39 -221.02

Formal Debt 1795.12 1816.79 1790.54 1790.54

Percentage without Savings -189.07 -149.70 -191.04 -193.89

Yearly Savings 1515.78 1519.94 1518.12 1512.98

Smoking -265.82 -217.48 -262.48 -267.08

Alcohol Consumption -244.94 -223.07 -252.58 -250.27

Hierarchical Hierarchical Hierarchical Hierarchical

Exponential(1∕𝜈̂) ℎ = 3 ℎ = 2 ℎ = 1
Monthly Income 1378.58 1380.30 1380.15 1380.31

Percentage with Formal Debt -221.04 -219.30 -220.08 -219.97

Formal Debt 1790.54 1792.28 1791.51 1790.73

Percentage without Savings -193.98 -191.80 -191.86 -192.60

Yearly Savings 1513.16 1513.94 1513.56 1514.96

Smoking -267.70 -266.74 -266.99 -265.20

Alcohol Consumption -250.43 -247.72 -249.07 -252.85

Fig. 6. WAIC for the different models implemented for the monthly income variable. The WAIC can help us to determine plausible models for the studied phenomenon.

3.4. Comparison of models

We implemented the discussed models for the variables selected in Section 2.3 and calculated the WAIC for each one of them. 
We present in Table 1 these values. We show in bold the lowest value of the WAIC for each variable, which corresponds with the 
preferred model according to this criterion.

More important that its use for model selection, the WAIC can help us for comparison of models. The objective is not to determine 
which is the correct model, a statement that is probably false for all the models, especially in the field of social science, but to 
determine which models can be potentially feasible to explain the data.

To answer this problem, a punctual value of the WAIC is not enough. Then, in Fig. 6, we present the credible intervals for the 
WAIC (at a 0.95 posterior probability) of the implemented models for the monthly income variable. The model with the lowest 
WAIC is when we model 𝜈 following an exponential distribution with rate parameter 1∕𝜈̂. However, all the hierarchical models 
that introduce a multilevel structure in the regional means and the within-region variances are feasible for explaining our data. 
Meanwhile, the WAIC of the models that assume a common within-variance 𝜎2 or complete pooling are far from the preferred one, 
so we cannot consider them as reliable models for our data.

As it is usual now, Fig. 7 shows the results of the model with the lowest WAIC for the monthly income variable. On the left of the 
top row we present the regional mean of the monthly income, while the deviation within each region is presented on its right. We 
observe that the model can explain not only the observed average in each region, but also its variability. On the left of the bottom row 
we show the average monthly income per province in each one of the regions. An important difference from the complete pooling 
or no pooling models, is that the hierarchical model explicitly adds parameters that model the national behavior. For example, the 
parameter 𝜇 models the national average monthly income, whose posterior distribution is presented on the right of the bottom row 
11

in Fig. 7.



Heliyon 10 (2024) e27968I. Gómez-Méndez and C. Amornbunchornvej

Fig. 7. Results considering a hierarchical model. We allow, both the mean of each region and the within-region variance 𝜎2
𝑗

to vary. We considered the prior 
𝜎2
𝑗
|𝜈, 𝜌2 ∼ Inverse-𝜒2(𝜈, 𝜌2). For 𝜌2 we used the vague prior 𝑝(𝜌2) = 1

𝜌2
1 (0,∞)(𝜌2), while 𝜈 ∼ Exponential(1∕𝜈̂). On the top row we show the regional mean, 𝜃𝑗 (left) and 

the regional standard deviation, 𝜎𝑗 (right). On the bottom row we show the province mean (left) and the national average monthly income, 𝜇 (right).

Finally, to get some insight into the meaning of these estimations, Fig. 8 presents two maps of Thailand,5 the observed average 
income per province is presented on the left, while the regional average income is presented on the right.

4. Hierarchical model with two non-nested clusters: income per region and education level

In this section we extend our hierarchical model to estimate the income not only by region, but also by education level. From a 
statistical perspective adding the education level to our model means that we add another cluster to the model which do not hold 
a hierarchical structure with the first one. For this purpose, we have assigned the observations to one of three mutually exclusive 
groups according to the highest education of the people in the house. We have called this variable education level, whose possible 
values are low, mid or high, and whose assignation is done accordingly to the rule presented in Table 2.

In Table 3, we present the percentage of the population belonging to the different levels of education, we can observe that 
approximately half of the population belongs to the mid education level, i.e. they completed elementary school but do not hold a 
bachelor or post-graduate degree, with the other two groups representing a significant percentage of the population each one. The 
percentage of the population with a low education level rounds 27% while the percentage for those with a high education level is 
12

5 Source for the raw map of Thailand: https://github .com /cvibhagool /thailand -map.

https://github.com/cvibhagool/thailand-map
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Fig. 8. Left: Average monthly income per province. Right: Average regional monthly income.

Table 2

Education, education level and years of education.

Education Years of education Education level

Uneducated 0

Low
Kindergarten 0

Pre-elementary school 3

Elementary school 6

Junior high school 9

MidSenior high school 12

Vocational degree 14

Bachelor degree 16
High

Post-graduate 19

Table 3

Proportion of observations according to the highest education in the house and its corresponding education 
level.

UN-EDU KDG P-ELEM ELEM JHS SHS VD BD PG

0.82% 0.03% 2.25% 23.65% 17.35% 23.94% 9.88% 20.97% 1.11%

26.75% 51.17% 22.08%

around 22%. Thus, the amount of observations belonging to each group is large enough to achieve reliable results per education 
level.

Let be 𝑌𝑖𝑗𝑘 the average income in the province 𝑖, belonging to region 𝑗, when the education level is equal to 𝑘. We maintain the 
hierarchical structure for both the regional mean and the within-region variance. But in this case, we allow the variance, 𝜎2

𝑗𝑘
, to vary 

not only between regions but also between education levels. We now present our hierarchical model, whose Bayesian network is 
shown in Fig. 9:

𝑌𝑖𝑗𝑘|𝜃𝑗 , 𝜆𝑘, 𝜎
2
𝑗𝑘

∼ (𝜃𝑗 + 𝜆𝑘, 𝜎
2
𝑗𝑘
)

𝜃𝑗 |𝜇, 𝜏2 ∼ (𝜇, 𝜏2)

𝜇 ∼ (𝜇̂, 𝜎̂2
𝜇
)

𝜏2 ∼ Exponential(1∕𝜏2)

𝜆𝑘|𝜉2 ∼ (0, 𝜉2)
13

𝜉2 ∼ Exponential(1∕𝜉2)
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Fig. 9. Hierarchical model with non-common 𝜎2 and two non-nested clusters. Random variables are represented inside circles, while a square represents a deterministic 
relation.

𝜎2
𝑗𝑘
|𝜈𝑘, 𝜌2𝑘 ∼ Inverse-𝜒2(𝜈𝑘, 𝜌2𝑘)

𝜈2
𝑘
∼ Exponential(1∕𝜈̂2

𝑘
)

𝑝(𝜌2
𝑘
) ∝ 1

𝜌2
𝑘

1 (0,∞)(𝜌2𝑘)

We proceed to explain the different parts of this model and how the hyperprior distributions where setting.

Likelihood. The first line of our model corresponds with the likelihood. We model 𝑌𝑖𝑗𝑘 as a normal variable with variance 𝜎2
𝑗𝑘

, and 
mean 𝜃𝑗 + 𝜆𝑘. The average monthly income of region 𝑗 is still modeled by 𝜃𝑗 , while 𝜆𝑘 is interpreted as the additional income due to 
the education level.

Prior distribution for 𝜃𝑗 . For the regional average monthly income we use a normal distribution as before, with mean 𝜇 representing 
the average national monthly income, and variance 𝜏2 representing the variance of the monthly income between regions.

Prior distribution for 𝜇. To establish the prior distribution for 𝜇 we use the hierarchical model proposed in Section 3.3. Then, we use 
the posterior sample of 𝜇, being 𝜇̂ its average and 𝜎̂2

𝜇
its variance.

Prior distribution for 𝜏2. Similarly to the prior distribution of 𝜇. To establish the prior distribution for 𝜏2 we use one more time the 
hierarchical model proposed in Section 3.3. Then, we use the posterior sample of 𝜏 , being 𝜏 its average. Note that, in this way, we 
use previous simpler models as building blocks to construct the priors of more complex models.

Prior distribution for 𝜆𝑘. Consider the mean of 𝑌𝑖𝑗𝑘, 𝜃𝑗 + 𝜆𝑘, and note that because 𝜃𝑗 |𝜇, 𝜏2 and 𝜆𝑘|𝜉2 follow normal distributions, it 
can be written as

𝜃𝑗 + 𝜆𝑘 = 𝜇 + 𝜏𝑍1 + 𝜉𝑍2,

where 𝑍1 and 𝑍2 are independent standard normal variables. From this expression, it is easy to observe that we have set the mean 
of 𝜆𝑘 to zero to have an identifiable model. If, on the other hand, we introduce a non-zero mean for 𝜆𝑘, we would not have any way 
to distinguish between both 𝜇 and this new hyperparameter.

For a fix 𝑘, we can estimate 𝜆𝑘 as follows. We first implement the hierarchical model proposed in Section 3.3 but only for those 
observations whose education level equals 𝑘, let be 𝜇𝑘 the national monthly income for this model. On the other hand, we implement 
the same hierarchical model for all the observations (note that this is the model used for the prior specification of both 𝜇 and 𝜏2). 
Thus, a punctual estimator for 𝜆𝑘, denoted as 𝜆̂𝑘, is given by the posterior mean of the variable 𝜆𝑘 = 𝜇𝑘 − 𝜇.

Prior distribution for 𝜉2. Because 𝜉2 represents the variance of 𝜆1, … , 𝜆𝐾 , we can estimate it with the variance of 𝜆̂1, … 𝜆̂𝐾 , denoted 
as 𝜉2. Then, for the prior distribution of 𝜉2 we use an exponential distribution with rate 1∕𝜉2.

Prior distribution for 𝜎2
𝑗𝑘

. For this model, we assume that the within-region variance can vary not only between regions but also 
between education levels. For the prior of 𝜎2

𝑗𝑘
we use the usual inverse-𝜒2 distribution presented in Section 3.3.

Prior distribution for 𝜈𝑘. For a fix 𝑘, we estimate 𝜈𝑘 through Equation (2) considering those observations whose education level 
14

equals 𝑘. An exponential distribution with rate parameter equal to 1∕𝜈̂𝑘 is used as proposed in Section 3.3.3.
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Table 4

WAIC without considering the education level, and when 
both region and education level are added to the model.

Without With region and

education level education level

Monthly Income 4662.59 4096.79

Fig. 10. Estimated monthly income, using a hierarchical model that incorporates the region and the education level. Left: Regional average monthly income. Right: 
National average.

Prior distribution for 𝜌2
𝑘
. For 𝜌2

𝑘
, we use the vague prior 𝑝(𝜌2

𝑘
) ∝ 1

𝜌2
𝑘

1 (0,∞)(𝜌2𝑘), which yields a proper posterior distribution.

We show in Table 4 the WAIC with and without considering the education level. We observe that considering the education level 
leads to a huge reduction of the WAIC, preferring the model that incorporates both clusters. Note that the values of the WAIC are 
around three times those presented in Table 1 for the monthly income variable. However, these quantities are not comparable. The 
reason is that when the education level is considered we have the union of three datasets, one for each education level for the 76 
provinces. Then, the model which incorporates the education level has three times the number of observations of the models that do 
not incorporate it, making the WAIC incomparable between both set of models.

In Fig. 10 we present the estimated monthly income at a national (left) and regional level (right). A close inspection reveals a 
similar distribution for the national average compared with the results presented in Fig. 7. However, the regional averages show more 
overlap, this indicates that, once we consider the education level, the region has less impact in the income. This might be the result 
of a mediation relation, in which education level acts as a mediator between the region and the income. This same phenomenon can 
be observed in Fig. 11 with more color-homogeneous maps for each education level, but with large differences between them. For 
those readers interested in causal inference, we recommend [50,57,58].

In Appendix B we present supplementary Figures for this model.

5. Bayesian hierarchical regression: income considering years of formal education

5.1. National model and separate models

Instead of considering the education as a categorical variable, we can approximate the years of formal education received, using 
the rule presented in Table 2, denote this new variable by 𝑋. Then, we can implement a regression model that estimates the income 
taking as input the years of education.

According to our proposed procedure, before presenting the full hierarchical model, we first consider two simple models. The 
complete pooling model and separate independent models for each region. These models are represented graphically in Fig. 12.

5.1.1. National model

Let be 𝑋𝑖𝑗 the average years of formal education in the province 𝑖 belonging to region 𝑗. The complete pooling model means 
the implementation of a single regression function that models the national relation between the income and the years of formal 
education. With this simple model, we can use vague priors for the parameters without harmful. We introduce now our national 
15

model:



Heliyon 10 (2024) e27968I. Gómez-Méndez and C. Amornbunchornvej

Fig. 11. Average monthly income per region and education level.

Fig. 12. Graphical representation of regression models. Left: National model, where only one regression function is considered for the all the regions. Right: No 
pooling model, where a regression model is implemented for each region independently of the others.

𝑌𝑖𝑗 |𝛼, 𝛽, 𝜎2 ∼ (𝛼 + 𝛽(𝑋𝑖𝑗 − 𝑋̄⋅⋅), 𝜎2)

𝑝(𝛼, 𝛽, 𝜎2) ∝ 1
𝜎21ℝ(𝛼)1ℝ(𝛽)1 (0,∞)(𝜎2)

The expected income 𝑌𝑖𝑗 is modeled through the regression function that takes as input the years of education 𝑋𝑖𝑗 , for simplicity 
we have considered a linear function for the regression, given by 𝛼+ 𝛽(𝑋𝑖𝑗 − 𝑋̄⋅⋅), where 𝑋̄⋅⋅ is the average years of formal education 
between all the provinces, that is

𝑋̄⋅⋅ =
∑𝐽

𝑗=1
∑𝑛𝑗

𝑖=1𝑋𝑖𝑗

𝑛
,

where 𝑛 =
∑𝐽

𝑗=1 𝑛𝑗 . Note that 𝛼 represents the average national income when the years of education equal the national average, 
while 𝛽 represents the amount of income added per year-of-education.

We present in Fig. 13 the posterior distributions for 𝛼 and 𝛽, Fig. 14 presents the estimated regression function, we also present 
credible bands for the regression function and the income, both bands are calculated at a 0.95 posterior probability.

5.1.2. Separate models

Instead of considering just one regression function for all the regions, we can estimate a regression function for each one of the 
regions, independent from the others. Similarly to the national regression model, for each one of these models we can use vague 
priors for the parameters without harmful:

𝑌𝑖𝑗 |𝛼𝑗 , 𝛽𝑗 , 𝜎
2
𝑗
∼ (𝛼𝑗 + 𝛽𝑗 (𝑋𝑖𝑗 − 𝑋̄⋅𝑗 ), 𝜎2

𝑗
)

𝑝(𝛼 , 𝛽 , 𝜎2) ∝ 1 1 (𝛼 )1 (𝛽 )1 (𝜎2)
16
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𝑗

ℝ 𝑗 ℝ 𝑗 (0,∞) 𝑗
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Fig. 13. Left: National average monthly income when the years of formal education equal the national average. Right: National ratio income per year-of-education.

Fig. 14. National regression model for the monthly income given the years of formal education.

We consider a linear function for the regression in each region 𝑗, given by 𝛼𝑗 + 𝛽𝑗 (𝑋𝑖𝑗 − 𝑋̄⋅𝑗 ), where

𝑋̄⋅𝑗 =
∑𝑛𝑗

𝑖=1𝑋𝑖𝑗

𝑛𝑗

is the average years of formal education in the region 𝑗. Note that 𝛼𝑗 represents the average income in the region when the years of 
education equal the regional average, while 𝛽𝑗 represents the amount of income added per year-of-education in the region.

On the left of Fig. 15, we present the average monthly income for each region when the years of education are equal to the regional 
mean, 𝛼𝑗 , with their respective credible intervals of 0.95 posterior probability and the observed average income in each region. 
Analogously, on the right we present the ratio of income per year-of-education, 𝛽𝑗 . Because this model assumes that the regions do 
not share any information, we observe large credible intervals, for some regions like Southern Thailand or Eastern Thailand these 
intervals even include negative values, which seems implausible. Moreover, as we pointed before, pretending that each region is 
independent for the others seems unrealistic. Therefore, we introduce the hierarchical regression model as a compromise between a 
single regression model and an independent regression model for each region.

5.2. Bayesian hierarchical regression varying intercepts

We already observed in Section 3.3 that adding a common structure to the region average income and to the within-regions 
variance results in a better model, so we can implement a model with those characteristics for the regression task. This model is 
17

represented graphically in Fig. 16.
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Fig. 15. Left: Regional average monthly income when the years of formal study equal the regional average. Right: Regional ratio income per year-of-education.

Fig. 16. Graphical representation of the Bayesian hierarchical regression model, varying intercepts but considering a common slope for all the regions.

We now present our hierarchical model for the regression task:

𝑌𝑖𝑗 |𝛼𝑗 , 𝛽𝑗 , 𝜎
2
𝑗
∼ (𝛼𝑗 + 𝛽𝑗 (𝑋𝑖𝑗 − 𝑋̄⋅𝑗 ), 𝜎2

𝑗
)

𝛼𝑗 |𝜇, 𝜏2 ∼ (𝜇, 𝜏2)

𝜇 ∼ (𝜇̂, 𝜎̂2
𝜇
)

𝜏2 ∼ Exponential(1∕𝜏2)

𝑝(𝛽) ∝1ℝ(𝛽)

𝜎2
𝑗
|𝜈, 𝜌2 ∼ Inverse-𝜒2(𝜈, 𝜌2)

𝜈2 ∼ Exponential(1∕𝜈̂2)

𝑝(𝜌2) ∝ 1
𝜌2
1 (0,∞)(𝜌2)

Many parts of this model have been inherited from our previous hierarchical models. Then, we explain only the prior distributions 
of the hyperparameters that changed from the previous models.

Prior distribution for 𝜇. Note that 𝜇 has a similar interpretation than the intercept parameter in the national regression model. Thus, 
18

we set 𝜇̂ and 𝜎̂𝜇 to the mean and deviation (respectively) of the intercept parameter in the national regression model.
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Fig. 17. Left: Regional average monthly income when the years of formal study equal the regional average. Right: National ratio income per year-of-education.

Fig. 18. Graphical representation of the hierarchical Bayesian regression model, varying intercepts and slopes.

Prior distribution for 𝜏2. Note that 𝜏2 models the variance between 𝛼1, … , 𝛼𝐽 . Then, we can estimate this quantity from the no 
pooling regression model. To do so, we first compute the average for the intercept parameter for each region, and then take the 
variance between these values.

In Fig. 17 we present analogous graphs of those presented in Figs. 13 and 15. Note that the distribution of 𝛽 includes negative 
values, which could indicate that different slopes should be preferred instead of a common national parameter.

5.3. Bayesian hierarchical regression varying intercepts and slopes

Because a common slope for all the regions seems inappropriate for this case, we now present a model that implements a 
hierarchical model on both parameters, the intercept and the slope. This model is represented graphically in Fig. 18.

Instead of just incorporating a normal distribution for the slopes into the previous model, we model the intercepts and slopes 
through a multivariate normal distribution, allowing them to covary. Then, 𝛼𝑗 and 𝛽𝑗 will follow a multivariate normal distribution 
with mean (𝜇, 𝛾) and a matrix of variances and covariances

𝑆 =
(

𝜏2 𝜏𝜁𝜌𝛼,𝛽
𝜏𝜁𝜌𝛼,𝛽 𝜁2

)
,

which can be written as

𝑆 =
(

𝜏 0
0 𝜁

)
𝑅

(
𝜏 0
0 𝜁

)
,

where

𝑅 =
(

1 𝜌𝛼,𝛽
𝜌𝛼,𝛽 1

)

19

is the correlation matrix.



Heliyon 10 (2024) e27968I. Gómez-Méndez and C. Amornbunchornvej

Fig. 19. Left: Regional average monthly income when the years of formal study equal the regional average. Right: Regional ratio income per year-of-education.

We are now ready to present our hierarchical model:

𝑌𝑖𝑗 |𝛼𝑗 , 𝛽𝑗 , 𝜎𝑗 ∼ Laplace(𝛼𝑗 + 𝛽𝑗 (𝑋𝑖𝑗 − 𝑋̄⋅𝑗 ), 𝜎𝑗 )

𝛼𝑗 , 𝛽𝑗 |𝜇, 𝜏2, 𝛾, 𝜁2, 𝜌𝛼,𝛽 ∼𝑀𝑉 𝑁

([
𝜇

𝛾

]
, 𝑆

)
𝜇 ∼ (𝜇̂, 𝜎̂2

𝜇
)

𝜏2 ∼ Exponential(1∕𝜏2)

𝛾 ∼ (𝛾̂ , 𝜎̂2
𝛾
)

𝜁2 ∼ Exponential(1∕𝜁2)

𝑅 ∼ LKJ(2)

𝜎2
𝑗
|𝜈, 𝜌2 ∼ Inverse-𝜒2(𝜈, 𝜌2)

𝜈2 ∼ Exponential(1∕𝜈̂2)

𝑝(𝜌2) ∝ 1
𝜌2
1 (0,∞)(𝜌2)

Likelihood. In this model we do not consider anymore a normal likelihood for our data. Instead, we consider a Laplace distribution. 
The density of a random variable 𝑌 that follows a Laplace distribution with parameters 𝜇 and 𝜎 is given by

𝑝(𝑌 |𝜇,𝜎) = 1
2𝜎

exp
(
− |𝑌 − 𝜇|

𝜎

)
.

This change in the likelihood is analogous to median regression in which the absolute errors are minimized, and thus corresponding to 
a robust regression model. As mentioned in [59], this can be generalized to other quantiles using the asymmetric Laplace distribution 
[60,61].

We can observe in Fig. 19 and Table 5 that with this change none of the credible intervals (calculated at a 0.95 posterior 
probability) for the ratio of income per year-of-education includes negative values, even while a constraint of positive values for 
these parameters was not incorporated in the model. If instead of a Laplace distribution, we would have considered a normal 
distribution for the data, some of these intervals would include negative values, which seems unfeasible to explain.

Prior distribution for 𝛾 . Analogously to the prior distribution for 𝜇, we set 𝛾̂ and 𝜎̂2
𝛾

to the mean and variance of the posterior 
20

distribution for the slope parameter in the national regression model.
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Fig. 20. Left: National average monthly income. Right: National ratio of income per-year-of-education.

Table 5

Amount of monthly income added per each year-of-education. 
We present the posterior mean for the national level and for 
each one of the regions, as well as a credible interval of 0.95 
posterior probability.

Amount of monthly income

added per year-of-education (THB)

National level 1880; (1322, 2443)

Northern Thailand 2159; (814, 3719)

Southern Thailand 2466; (1111, 4056)

Western Thailand 1278; (94, 2613)

Eastern Thailand 2545; (1051, 4109)

Northeast Thailand 1818; (1076, 2648)

Central Thailand 1509; (413, 2642)

Prior distribution for 𝜁2. To set the prior of 𝜁2 we follow the same strategy used for the prior of 𝜏2 . That is, we calculate the posterior 
mean of the slopes for the separate independent regression models, and then we set 𝜁2 to the variance of these posterior means.

Prior distribution for 𝑅. For the prior of 𝑅 we consider the LKJ distribution [62], which is a distribution over all positive definite 
correlation matrices where the shape is determined by a single parameter, 𝜂 > 0. Setting 𝜂 = 1 results in a uniform distribution over 
all the correlations 𝜌𝛼,𝛽 , however setting 𝜂 = 2 is an alternative that has been considered in the literature [39,63–65] to define a 
weakly informative prior over 𝜌𝛼,𝛽 . It implies that 𝜌𝛼,𝛽 is near zero, reflecting the prior belief that there is no correlation between 
intercepts and slopes.

In Fig. 19 we present analogous graphs of those presented in Fig. 13. Comparing the credible interval of the slopes, we can 
observe not only narrower intervals, but also that they contain only positive values, which means that every extra year of education 
generates a higher income. The credible intervals for the slopes and their posterior mean are also shown in Table 5. The fact that 
these intervals overlap suggests that this increment in the income is similar for all the regions.

With our hierarchical model, we can estimate the national average income when the years of education equal the national 
average years, which is modeled by 𝜇, and whose posterior distribution is shown on the left of Fig. 20. On the right side we present 
the posterior distribution of 𝛾 , which models the national ratio of income-per-year of education.

We show in Fig. 21 the estimated regression models with credible bands for the regression functions and the province monthly 
income, both bands are calculated at a 0.95 posterior probability. In Fig. 22 we show the joint posterior of the intercepts and slopes. 
On the left side we show the posterior mean of each pair (𝛼𝑗 , 𝛽𝑗 ) and compare them to the posterior mean of the pair (𝛼, 𝛽) for the 
national regression model. Similarly, on the right side we present our estimates for the slopes and intercepts, and compare them with 
the extreme case of considering separate independent models for each region. We can observe how the estimators are closer to more 
probable regions when we impose a hierarchical structure.

Finally, we show in Table 6 and Fig. 23 the WAIC for all the regression models. For comparison purposes, we also present in 
Table 6 the WAIC for the preferred model without a covariate variable (see Table 1). Note that the model that allows variation 
between intercepts with a common slope is as feasible as the model that allows different intercepts and slopes. We observe that, 
except for the national regression model, all the regression models present a lower WAIC value that the model without covariables, 
21

making them more reliable models accordingly to this criterion.
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Fig. 21. Regional regression models for the monthly income given the years of education, we impose a hierarchical model for the intercepts and the slopes, allowing 
them to covary.

Fig. 22. Joint posterior of the slopes and intercepts. Left: We show the posterior mean of each pair (𝛼𝑗 , 𝛽𝑗 ) and compare them with the posterior mean of the pair 
(𝛼, 𝛽) for the national regression model. Right: We present our estimates for the intercepts and slopes and compare them with the estimators for separate independent 
models for each region.

Table 6

WAIC for the models of regression. In the first cell we present the lowest value in Table 1 for 
the models without a covariate.

Without National Separate Varying 𝛼𝑗 , Varying 𝛼𝑗 ,

Covariable Model Models Common 𝛽 Varying 𝛽𝑗
22

Monthly Income 1378.58 1387.08 1358.77 1354.37 1353.82
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Fig. 23. WAIC for the Bayesian hierarchical regression models.

6. Discussion of results

While this work is devoted to the analysis and implementation of Bayesian hierarchical models, we first introduced the extreme 
cases of no pooling and complete pooling models, corresponding to one-shirt-size and custom-made policies. We observed that none 
of these models was able to explain satisfactory our data, presenting serious drawbacks. For instance, in the case of separate models 
for each region, we observed large credible intervals, especially for regions with a few number of provinces. On the other hand, when 
we fit a single common model for all the regions, the uncertainty in the estimations was reduced dramatically since we were using all 
the observations to estimate them. However, we observed that in this case, the variance within the regions was overestimated. This 
awkward behavior is because, now that all the regions share the same mean, the only way to explain the variation in the observations 
is overestimating the variance. After analyzing these models, we introduced the hierarchical models as a better approach to explain 
our data.

For simple Bayesian hierarchical models, we took advantage of the conjugacy property of the proposed distributions to easily 
derive the full conditional posterior distributions of the parameters, which allows the implementation of simple MCMC techniques 
such as Gibbs sampling [47]. Furthermore, many of these distributions are well-known which makes even simpler the simulation 
from the posterior distribution of the whole set of parameters.

However, attempting to calculate the exact posterior distribution of the parameters for more complex hierarchical models might 
be extremely challenging. And, even if it is possible to obtain a close form for the full conditional posterior distributions, it might 
not follow a well-known distribution, which would represent a considerably drawback for the implementation of more complex 
and realistic hierarchical models since it would increase the computational resources needed and the time for their implementation. 
For example, as commented in Section 3.3, it is still possible to use Gibbs sampling when we consider an improper distribution for 
the degrees of freedom 𝜈, with the extra-effort of finding an appropriate grid, which would be reflected in a lower computational 
performance of the model. Fortunately, now there is a wide list of Bayesian software programs [23] and alternative Monte Carlo 
techniques, such as Hamiltonian Monte Carlo [54,55], that makes possible to implement more intricate Bayesian models.

In Section 4, we introduced the education level into our hierarchical model, creating a model with two non-nested clusters. It 
is important to notice that, since each new variable added to the model requires the specification of its prior distribution and its 
hierarchical structure, as well as to be sure that the parameters of the model remain identifiable, it remains extremely challenging to 
introduce several variables into the hierarchical models, which introduces an important drawback considering the multidimensional 
problem of poverty [3,4].

While some distributions in our hierarchical models where chosen to get a conjugate model, a strong point of the Bayesian models 
is that their allow easily to incorporate other distributions that reflect better our knowledge of the phenomenon, allow a suitable 
interpretation, or to achieve robust inferences. As instance, we set the parameters related with the variance of a distribution to follow 
an exponential distribution for its interpretability, simplicity and the guarantee of the existence of their posterior distribution. Thus, 
if the data does not follow the assumptions reflected in the proposed distributions, they can be replaced for more appropriate ones. 
For example, at the end of Section 5 we abandoned the normality assumption of the data and imposed a Laplace distribution to 
achieve more robust results.

For the comparison of the models, alongside the analysis and discussion of the results, we used the Widely Applicable Information 
Criterion (WAIC) [43,44]. We found that Bayesian hierarchical models performed better than both complete pooling (single policy) 
and no pooling models (custom-made policy), which is reflected in lower WAIC values.

It is worth to note that we did not consider the underlying spatial structure between the provinces, which represents a limitation 
for our models. For example, a province at the border of its region might be more similar to other provinces that could belong to 
other regions, than to the rest of the provinces within its own region.

A central concept to justify the use of hierarchical model is what is known in probability and statistics as exchangeability. As 
commented in [42], when there is no information to distinguish any of the parameters of the model from the others, and no ordering 
23

or grouping of the parameters can be made, one must assume that the parameters are exchangeable in their joint distribution. 
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In practice, ignorance implies exchangeability. Generally, the less we know about a problem, the more confidently we can make 
claims of exchangeability. However, often observations are not fully exchangeable, but are partially or conditionally exchangeable. 
If observations can be grouped, we may make a hierarchical model, where each group has its own submodel. When assuming 
exchangeability we assume there are no important covariates that might form the basis of a more complex model. In such situation, 
we can expand the framework of the model to be exchangeable in the observed data and covariates, for example using a hierarchical 
regression model.

Therefore, we have implicitly considered that the provinces are exchangeable within each region given the variables considered 
so far, even while in reality there are differences between them that we did not consider. If such differences are significant, then 
the exchangeability assumption within the regions would be violated and a hierarchical model that did not consider such difference 
would be inappropriate.

7. Conclusions

One-shirt-size policy cannot handle poverty issues well since each area has its unique challenges, while having a custom-made 
policy for each area separately is unrealistic due to limitation of resources as well as having issues of ignoring dependencies of 
characteristics between different provinces. In this work we presented and discussed several Bayesian hierarchical models which 
can potentially explain the data regarding income and other poverty-related variables in the multi-resolution governing structural 
data of Thailand. These models present an optimal solution to two extremes – complete pooling and no pooling. That is, they are 
a good trade-off when independence between regions or groups is difficult or implausible to justify, but a common model for all 
the regions presents a poor performance. In such case, we introduced a common structure to the parameters of the model through 
informative priors and the use of hyperparameters, allowing variation in the estimation of the regions’ parameters without making 
them completely independent.

Before starting directly with intricate hierarchical models, our proposed approach is to first introduce simple models which 
are later used as building blocks for the prior specification of the hyperparameters in more complex hierarchical models. In this 
way, hierarchical models allow the inference of prior distributions from data rather than requiring them to be specified using 
subjective information [40], which might be challenging for some parameters in high levels of the hierarchical model. Furthermore, 
in hierarchical models where priors depend on hyperparameter values that are data-driven avoids the direct problems of linked to 
double-dipping [23], without being overwhelmed with the problems of overfitting. After analyzing the results of simpler models and 
discussing their drawbacks to properly explain the data, we encouraged the introduction of hierarchical structures explaining how 
to design hierarchical models as long as it was suggested by the data.

By adding the year-of-education variable, the hierarchical models enrich their performance of variable explanation. We observed 
that having a higher education level increases significantly the households’ income for all the regions in Thailand, reflecting the 
important impact of the education in the income, always showing a positive relation. Due to the multilevel structure of our models 
we were able to estimate the average income for each education level and the ratio of income per year-of-education, at regional 
and national levels. It is important to mention that the impact of the region in the households’ income was almost vanished when 
education level or years of education were considered. Therefore, education might have a mediation role between regions and the 
income.

From the theoretical side, we presented a way to estimate the scale parameter and the degrees of freedom for an inverse 𝜒2

distribution using the method of moments. We also proposed some vague priors for the degrees of freedom of the distribution for 
which, to the best of our knowledge, there is no literature presenting an alternative approach for this problem, remaining as an open 
problem to deduce a noninformative prior for the degrees of freedom with the guarantee of the existence of its posterior distribution.

We also encouraged the use of Bayesian networks for two main reasons, which were extensively exploded in this work. First, for 
their ability to visualize easily the hierarchical structures and relations between the variables, which helps in the interpretation and 
understanding o the models. Second, because they allow us to use 𝑑-separation rules [48] to deduce the conditional independence 
between the parameters, which could help when calculating the full conditional posterior distribution of the parameters.

Finally, we would like to emphasize that poverty is a serious issue in many developing countries, thus, statistical studies are badly 
needed to help the governments cope with poverty. Our work can serve as a guideline for other countries that require the Bayesian 
hierarchical approach to model their variables and get insight from data.

Note

Codes to reproduce our results are available in https://github .com /IrvingGomez /BayesianHierarchicalIncome.
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Appendix A. Technical appendix

A.1. WAIC

We can compare the average log-probability for each model to get an estimate of the relative distance of each model from the 
real distribution of the data. The Bayesian version of the log-probability score is called the log-pointwise-predictive-density (lppd) 
defined as

lppd =
𝑛∑

𝑖=1
log

[
1
𝑆

𝑆∑
𝑠=1

𝑝
(
𝑌𝑖|Θ(𝑠))] ,

where 𝑆 is the number of simulated samples from the posterior distributions, Θ(𝑠) is the 𝑠-th set of sampled parameter values and 
𝑝 
(
𝑌𝑖|Θ(𝑠)) is the density of 𝑌𝑖 given the parameters Θ(𝑠).
However, we should also consider the ‘complexity’ of the model, this complexity is given by the effective number of parameters 

of the model, labeled 𝑝WAIC and defined as

𝑝WAIC =
𝑛∑

𝑖=1
𝕍Θ∼𝑝(Θ|𝐘) log𝑝(𝑌𝑖|Θ).

Because we count with a sample of the posterior distribution of the parameters, this quantity can be well-approximated taking the 
sample variance of the log-density for each observation 𝑖, and then summing up these variances.

Therefore, to get a quantitative way to compare the models, we consider the Watanabe-Akaike information criterion (WAIC) 
defined as

WAIC = −2lppd+ 2𝑝WAIC.

In Watanabe’s original definition, WAIC is the negative of the average lppd, thus is divided by 𝑛 and does not have the factor 2; 
it is common to scale it to be comparable with AIC and other measures of deviance.

A.2. Qualitative characteristics of the parameters and models

Consider the model presented in Section 3.2, and the prior 𝑝(𝜇) ∝ 1ℝ(𝜇), it is not difficult to prove [42] that

𝜇|𝜏, 𝜎2,𝐘 ∼ (𝜇̂, 𝑉𝜇),

where

𝜇̂ =

∑𝐽

𝑗=1
𝑌⋅𝑗

𝜎̄2
𝑗
+𝜏2∑𝐽

𝑗=1
1

𝜎̄2
𝑗
+𝜏2

, 𝑉𝜇 = 1∑𝐽

𝑗=1
1

𝜎̄2
𝑗
+𝜏2

, and 𝜎̄2
𝑗
= 𝜎2

𝑛𝑗
.

Note that

𝜇̂ ←←←←←←←←←←←←←←←←←→
𝜏→0

∑𝐽

𝑗=1
𝑌⋅𝑗

𝜎̄2
𝑗∑𝐽

𝑗=1
1
𝜎̄2
𝑗

≡ 𝑌⋅⋅ and 𝑉𝜇 ←←←←←←←←←←←←←←←←←→
𝜏→0

1∑𝐽

𝑗=1
1
𝜎̄2
𝑗

≡ 𝜑2.

Using these expressions and Equation (1), we can calculate

𝔼(𝜃𝑗 |𝜏, 𝜎2,𝐘) = 𝔼𝜇[𝔼(𝜃𝑗 |𝜇, 𝜏2, 𝜎2,𝐘)|𝜏, 𝜎2,𝐘]
25

= 𝔼𝜇[𝜃̂𝑗 |𝜏, 𝜎2,𝐘]
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= 𝔼𝜇

⎡⎢⎢⎢⎣
1
𝜎̄2
𝑗

𝑌⋅𝑗 +
1
𝜏2

𝜇

1
𝜎̄2
𝑗

+ 1
𝜏2

|||𝜏, 𝜎2,𝐘
⎤⎥⎥⎥⎦

=

1
𝜎̄2
𝑗

𝑌⋅𝑗 +
1
𝜏2

𝜇̂

1
𝜎̄2
𝑗

+ 1
𝜏2

, (A.1)

and

𝕍 (𝜃𝑗 |𝜏, 𝜎2,𝐘) = 𝔼𝜇[𝕍 (𝜃𝑗 |𝜇, 𝜏2, 𝜎2,𝐘)|𝜏, 𝜎2,𝐘] + 𝕍𝜇[𝔼(𝜃𝑗 |𝜇, 𝜏2, 𝜎2,𝐘)|𝜏, 𝜎2,𝐘]

= 𝔼𝜇[𝑉𝜃𝑗
|𝜏, 𝜎2,𝐘] + 𝕍𝜇[𝜃̂𝑗 |𝜏, 𝜎2,𝐘]

= 𝔼𝜇

⎡⎢⎢⎢⎣
1

1
𝜎̄2
𝑗

+ 1
𝜏2

|||𝜏, 𝜎2,𝐘
⎤⎥⎥⎥⎦+ 𝕍𝜇

⎡⎢⎢⎢⎣
1
𝜎̄2
𝑗

𝑌⋅𝑗 +
1
𝜏2

𝜇

1
𝜎̄2
𝑗

+ 1
𝜏2

|||𝜏, 𝜎2,𝐘
⎤⎥⎥⎥⎦

= 1
1
𝜎̄2
𝑗

+ 1
𝜏2

+

(
1
𝜏2

)2
𝑉𝜇(

1
𝜎̄2
𝑗

+ 1
𝜏2

)2

Note that 𝔼(𝜃𝑗 |𝜏, 𝜎2, 𝐘) ←←←←←←←←←←←←←←←←←→
𝜏→0

𝑌⋅⋅, and 𝕍 (𝜃𝑗 |𝜏, 𝜎2, 𝐘) ←←←←←←←←←←←←←←←←←→
𝜏→0

𝜑2. Meanwhile, 𝔼(𝜃𝑗 |𝜏, 𝜎2, 𝐘) ←←←←←←←←←←←←←←←←←←←←←→
𝜏→∞

𝑌⋅𝑗 , and 𝕍 (𝜃𝑗 |𝜏, 𝜎2, 𝐘) ←←←←←←←←←←←←←←←←←←←←←→
𝜏→∞

𝜎̄2
𝑗
. This 

implies that both the complete pooling and no pooling models can be seen as extreme cases of the hierarchical model, achieved when 
𝜏 → 0 and 𝜏 →∞, respectively. Then, the hierarchical model provides a compromise between these two extreme models.

On the other hand, in [42] it is discussed an empirical approach, based on an analysis of variance (ANOVA), to estimate the 
parameters 𝜎2 and 𝜏2, which we now present and analyze here.

The mean square within groups 𝑀𝑆𝑊 is given by

𝑀𝑆𝑊 = 1
𝐽 (𝑛̄− 1)

𝐽∑
𝑗=1

𝑛𝑗∑
𝑖=1

(𝑌𝑖𝑗 − 𝑌⋅𝑗 )2, where 𝑛̄ = 1
𝐽

𝐽∑
𝑗=1

𝑛𝑗 ,

and the mean square between groups 𝑀𝑆𝐵 by

𝑀𝑆𝐵 = 1
𝐽 − 1

𝐽∑
𝑗=1

𝑛𝑗∑
𝑖=1

(𝑌⋅𝑗 − 𝑌⋅⋅)2, where 𝑌⋅⋅ =
∑𝐽

𝑗=1
𝑛𝑗

𝜎2
𝑌⋅𝑗∑𝐽

𝑗=1
𝑛𝑗

𝜎2

.

Then, unbiased estimators for 𝜎2 and 𝜏2 are given by 𝜎̂2ANOVA =𝑀𝑆𝑊 and 𝜏2ANOVA = 𝑀𝑆𝐵−𝑀𝑆𝑊

𝑛̄
.

The same authors prove that

𝑝(𝜏|𝜎2,𝐘) ∝ 𝑝(𝜏)𝑉 1∕2
𝜇

𝐽∏
𝑗=1

(𝜎̄2
𝑗
+ 𝜏2)−1∕2 exp

{
−

(𝑌⋅𝑗 − 𝜇̂)

2(𝜎̄2
𝑗
+ 𝜏2)

}
.

Note that everything multiplying 𝑝(𝜏) approaches a nonzero constant limit as 𝜏 tends to zero. Thus, the behavior of the posterior 
density near 𝜏 = 0 is determined by the prior density. The usual noninformative function 𝑝(𝜏) ∝ 1

𝜏
1 (0,∞)(𝜏) is not integrable for any 

small interval including 𝜏 = 0 and yields a nonintegrable posterior density. Meanwhile, the uniform prior distribution 𝑝(𝜏) ∝ 1 (0,∞)(𝜏)
yields a proper posterior density.

In Fig. 24 we present the posterior conditional distribution of 𝜏 conditional on the empirical estimate of 𝜎2, that is 𝑝(𝜏|𝜎̂2ANOVA). 
We also present the mode of this distribution, and an approximate interval of 0.95 probability. Under conditions of regularity a 
(1 − 𝛼) × 100% probability interval is given by

⎧⎪⎨⎪⎩𝜏 ∶
𝑝(𝜏|𝜎2,𝐘)

𝑝(𝜏MAP|𝜎2,𝐘)
≥ exp

⎧⎪⎨⎪⎩−
𝑞1−𝛼

𝜒2
1

2

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ ,

where 𝑞1−𝛼

𝜒2
1

denotes the quantile of probability 1 − 𝛼 of a 𝜒2 distribution with 1 degree of freedom.

In Fig. 25 we present 𝔼(𝜃𝑗 |𝜏, 𝜎2, 𝐘), calculated in Equation (A.1), as a function of 𝜏 and setting the value of 𝜎2 to 𝜎̂2ANOVA. We plot 
a vertical dashed line on the value 𝜏MAP. We can observe how this estimated value lies between the extreme cases of the complete 
26

pooling and no pooling models.



Heliyon 10 (2024) e27968I. Gómez-Méndez and C. Amornbunchornvej

Fig. 24. Posterior distribution of 𝜏 conditional on 𝜎2 . We have set 𝜎2 to its empirical estimator. We show the empirical estimator for 𝜏 based on the ANOVA and the 
mode of the distribution. Both estimators are presented on an interval of approximately 0.95 posterior probability, we calculate this interval based on the asymptotic 
behavior of the posterior distribution.

Fig. 25. Conditional posterior mean for 𝜃𝑗 , 𝔼(𝜃𝑗 |𝜏, 𝜎2,𝐘) (𝑗 = 1,… , 𝐽 ) as function of 𝜏 , setting 𝜎2 to 𝜎̂2ANOVA. The vertical dashed line is plot on 𝜏MAP.

Consider now the model presented in Section 3.3, and remember that

𝜎2
𝑗
|𝜽, 𝜈, 𝜌2,𝐘 ∼ Inverse-𝜒2(𝜈𝑗 , 𝜎̂2

𝑗
),

where

𝜈𝑗 = 𝜈 + 𝑛𝑗 , 𝜎̂2
𝑗
=

𝜈𝜌2 + 𝑛𝑗𝑣𝑗

𝜈 + 𝑛𝑗
,and 𝑣𝑗 =

1
𝑛𝑗

𝑛𝑗∑
𝑖=1

(𝑌𝑖𝑗 − 𝜃𝑗 )2.

Then,

𝔼(𝜎2
𝑗
|𝜽, 𝜈, 𝜌2,𝐘) = 𝜈𝑗

𝜈𝑗 − 2
𝜎̂2
𝑗

=
𝜈𝜌2 + 𝑛𝑗𝑣𝑗

𝜈 + 𝑛𝑗 − 2
,

27

and
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Fig. 26. Square root of the conditional posterior mean for 𝜎2
𝑗
, 
√

𝔼(𝜎2
𝑗
|𝜽, 𝜈, 𝜌2,𝐘) (𝑗 = 1, … , 𝐽 ) as function of 𝜈, setting 𝜌2 to 𝜌̂2 and substituting 𝑣𝑗 for the observed 

variance in the region. The vertical dashed line is plot on 𝜈̂.

𝕍 (𝜎2
𝑗
|𝜽, 𝜈, 𝜌2,𝐘) = 2𝜈2

𝑗

(𝜈𝑗 − 2)2(𝜈𝑗 − 4)
𝜎̂4
𝑗

=
2(𝜈𝜌2 + 𝑛𝑗𝑣𝑗 )2

(𝜈 + 𝑛𝑗 − 2)2(𝜈 + 𝑛𝑗 − 4)
,

from these expressions is easy to see that 𝔼(𝜎2
𝑗
|𝜽, 𝜈, 𝜌2, 𝐘) ←←←←←←←←←←←←←←←←←←←←←→

𝜈→∞
𝜌2 and 𝕍 (𝜎2

𝑗
|𝜽, 𝜈, 𝜌2, 𝐘) ←←←←←←←←←←←←←←←←←←←←←→

𝜈→∞
0. On the other hand, if 𝜈 → 0, then 

𝜎2
𝑗
|𝜽, 𝜈, 𝜌2, 𝐘 ∼ Inverse-𝜒2(𝑛𝑗 , 𝑣𝑗 ), corresponding with the no pooling inference.

In Fig. 26 we present 
√

𝔼(𝜎2
𝑗
|𝜽, 𝜈, 𝜌2,𝐘), as a function of 𝜈 and setting the value of 𝜌2 to the estimator 𝜌̂2 calculated with 

Equation (3), and substituting 𝑣𝑗 for the observed variance. We plot a vertical dashed line on the value 𝜈̂ (see Equation (2)). Once 
again, we can observe how this estimated value lies between the extreme cases of complete pooling and no pooling models.

In Fig. 27 we present a diagram representing the different models considered in Section 3 and their relation with the parameters. 
On the bottom left of the diagram we present the complete pooling model, which assumes the same within variance for all the regions 
and the same mean. While on the other extreme of the diagram we present the no pooling model, where separate independent models 
are adjusted for each region. The hierarchical models are between these two extreme cases. When we consider 𝑝(𝜈) ∝ 𝜈−ℎ1 (0,∞)(𝜈), 
we observed through simulations that large values of ℎ tend to generate within-region variances similar to the no pooling model, 
while a common within-region variance is obtained when ℎ → 0. Somewhere around these models are our other two approaches, 
set 𝜈 to a fixed estimated value 𝜈̂, or assign a prior exponential distribution. Next to each model we present its corresponding WAIC 
value for the monthly income variable, showing in bold the model with the lowest WAIC (see Table 1).

A.3. Proofs

A.3.1. Conditional posterior distribution of 𝜌2
To calculate the conditional posterior distribution of 𝜌2, note that

𝑝(𝜌2|𝝈2, 𝜈) ∝ 𝑝(𝜌2|𝜈)𝑝(𝝈2|𝜈, 𝜌2)
∝ 𝑝(𝜌2)

𝐽∏
𝑗=1

(𝜌2)𝜈∕2 exp

{
− 𝜈

2𝜎2
𝑗

𝜌2

}

= 𝑝(𝜌2)(𝜌2)
𝐽𝜈

2 exp

{
−

(
𝜈

2

𝐽∑
𝑗=1

1
𝜎2
𝑗

)
𝜌2

}
.

Setting 𝑝(𝜌2) = 1
𝜌2
1 (0,∞)(𝜌2) yields

𝑝(𝜌2|𝝈2, 𝜈) ∝ (𝜌2)
𝐽𝜈

2 −1 exp

{
−

(
𝜈

𝐽∑ 1
)

𝜌2

}
1 (𝜌2).
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2
𝑗=1 𝜎2

𝑗

(0,∞)
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Fig. 27. Relation between models and the influence of the different parameters in the qualitative characteristics of the models. Next to each model we present its 
corresponding WAIC value for the monthly income, presented in Table 1.

It is immediate from the previous expression that

𝜌2|𝝈2, 𝜈 ∼ Gamma

(
𝐽𝜈

2
,
𝐽𝜈

2𝜌̂2

)
,

where

𝜌̂2 = 𝐽∑𝐽

𝑗=1
1
𝜎2
𝑗

.

Note that 𝔼(𝜌2|𝝈2, 𝜈) = 𝜌̂2 is the harmonic mean of the within-groups variances. Thus 𝜌2 models the “common” within-variance.

A.3.2. Estimating 𝜌2 and 𝜈
Because 𝜎2

𝑗
∼ Inverse-𝜒2(𝜈, 𝜌2), then

𝔼(𝜎2
𝑗
|𝜈, 𝜌2) = 𝜈

𝜈 − 2
𝜌2

and

𝕍 (𝜎2
𝑗
|𝜈, 𝜌2) = 2𝜈2

(𝜈 − 2)2(𝜈 − 4)
𝜌4.

Let be 𝐸𝑠2 the average of the observed sample within-group variances 𝑠21, … , 𝑠2
𝐽

and 𝑉𝑠2 their variance. Then, using the method of 
moments we have

𝐸𝑠2 =
𝜈̂

𝜈̂ − 2
𝜌̂2 ⇒ 𝜌̂2 = 𝜈̂ − 2

𝜈̂
𝐸𝑠2 ,

and

𝑉𝑠2 =
2�̂𝜈2

���(𝜈̂ − 2)2(𝜈̂ − 4)
���(𝜈̂ − 2)2

�̂𝜈2
(𝐸𝑠2 )

2

⇒ 𝜈̂ =
2(𝐸𝑠2 )2

𝑉𝑠2
+ 4,

thus

𝜌̂2 =
(
1 −

2𝑉𝑠2

2(𝐸𝑠2 )2 + 4𝑉𝑠2

)
𝐸𝑠2(

2(𝐸𝑠2 )2 + 2𝑉𝑠2
)
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=
2(𝐸𝑠2 )2 + 4𝑉𝑠2

𝐸𝑠2 .
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Fig. 28. Average income per education level.

Fig. 29. Difference between average income per education level.

Appendix B. Supplementary figures

B.1. Income per region and education level

Remember that the expected monthly income for the region 𝑗 and the education level 𝑘 is given by 𝜃𝑗 + 𝜆𝑘, where 𝜃𝑗 |𝜇, 𝜏2 ∼
 (𝜇, 𝜏2). Then, fixing the education level, and taking the average over all the regions, i.e. computing the expected value over 𝜃𝑗 , 
we obtain the expected value of the monthly income for the education level 𝑘, given by 𝜇 + 𝜆𝑘. We present in Fig. 28 the expected 
monthly income for each education level. Similarly, Fig. 29 shows the difference of income between the education levels. We can 
conclude from these Figures that the education level has an important impact on the income of households, when averaging over all 
the regions, a higher education level is related with a higher income.

We present in Figs. 30 to 32 our ubiquitous graphs showing the regional average, the regional deviation and the province average 
of the monthly income. This time, however, we present these quantities for each education level. We observe that the education level 
has an important impact on income regardless of the region.

Appendix C. Simulation study

C.1. Hierarchical models with one cluster

For the first part of the simulation study we consider six groups, and simulate data with the next distributions

𝑌𝑖𝑗 |𝜃𝑗 , 𝜎2
𝑗
∼ (𝜃𝑗 , 𝜎2

𝑗
)

𝜃𝑗 |𝜇, 𝜏2 ∼ (𝜇, 𝜏2)
2 2 2
30

𝜎
𝑗
|𝜈, 𝜌 ∼ Inverse-𝜒 (𝜈, 𝜌)
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Fig. 30. Average monthly income per region and education level.

Fig. 31. Deviation within-region of the monthly income per region and education level.

setting 𝜇 = −9, 𝜏 = 1, 𝜌 = 3 and 𝜈 = 4 where 𝑗 represents the index of group and 𝑖 represents the index of observation. While the 
number of observations for each group is simulated from independent shifted Poisson distributions having support in {10, 11, …}
and with rate parameter equal to three.

Most of the observations made through the main part of this article remains for the simulated data. Thus, we limit ourselves 
here to show analogous graphs to those presented in the main part of the article, adding minor comments when we consider them 
necessary.

As in the main part of the present article, we start our simulation study considering independent models for each group. Fig. 33

shows our usual credible intervals for each 𝜃𝑗 , 𝜎𝑗 and the observations within each group 𝑌𝑖𝑗 , with the only difference that now next 
to the credible intervals we show the real simulated values.

As commented in the main part of the article, we observe wide intervals, overlapping in most of their values, which indicates 
that a complete pooling model might be more appropriate for the data. In Fig. 34 we show the analogous results when a complete 
pooling model is considered. We observe a poor performance for this model when tries to infer the real mean and standard deviation 
of each group.

Due to the poor performance of the complete pooling model and the large variance when separate models are implemented, we 
present the hierarchical model as a trade-off that might reduce the uncertainty of the estimations while keeping a good performance 
31

to explain the data. For brevity, we only show in Fig. 35 the analogous results of Fig. 7 for the hierarchical model with the lowest 
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Fig. 32. Province average monthly income per region and education level.
32

Fig. 33. Results considering independent separate models for each group.
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Fig. 34. Results considering the complete pooling model for all the groups.

Table 7

Real and estimated values for 𝜈 and 𝜌.

Real value Estimated value

𝜈 4 4.81

𝜌 3 3.34

WAIC which, for the simulated data, corresponds with the case where 𝑝(𝜈) ∝ 𝜈−31 (0,∞)(𝜈). Reminding that a model with lower WAIC 
performs better than a model with higher WAIC.

In Fig. 36 we present the WAIC comparison of the different models. We can observe that for these simulated data, except for 
the complete pooling model and the hierarchical model with common within-groups deviation 𝜎, most of the models present similar 
values for the WAIC.

Finally, in Table 7 we compare the real values of 𝜈 and 𝜌 against their estimated values given by Equations (2) and (3), where we 
can observe that these quantities can be properly estimated by the proposed procedure.

C.2. Bayesian hierarchical regression

The second part of our simulation study is devoted to Bayesian hierarchical regression. For this part, we keep six different groups, 
and simulate data according to the following distributions

𝑌𝑖𝑗 |𝛼𝑗 , 𝛽𝑗 , 𝜎𝑗 ∼ (𝛼𝑗 + 𝛽𝑗 (𝑋𝑖𝑗 − 𝑋̄⋅𝑗 ), 𝜎2
𝑗
)

𝛼𝑗 , 𝛽𝑗 |𝜇, 𝜏2, 𝛾, 𝜁2 ∼𝑀𝑉 𝑁

([
𝜇

𝛾

]
,

[
𝜏2 0
0 𝜁2

])
33

𝜎2
𝑗
|𝜈, 𝜌2 ∼ Inverse-𝜒2(𝜈, 𝜌2)
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Fig. 35. Results considering a hierarchical model. We allow, both the within-group mean and the within-group variance 𝜎2
𝑗

to vary. We considered the prior 
𝜎2
𝑗
|𝜈, 𝜌2 ∼ Inverse-𝜒2(𝜈, 𝜌2). For 𝜌2 we used the vague prior 𝑝(𝜌2) = 1

𝜌2
1 (0,∞)(𝜌2), while for 𝜈 we consider the prior 𝑝(𝜈) ∝ 𝜈−31 (0,∞)(𝜈).
34

Fig. 36. WAIC for the different models.
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Fig. 37. Posterior distribution of 𝛼 and 𝛽 when a unique common model is adjusted to all the data.

Fig. 38. Common regression model.

setting 𝜇 = −9, 𝜏 = 1, 𝛾 = 2, 𝜁 = 3, 𝜌 = 3 and 𝜈 = 4. While the number of observations for each group is simulated from independent 
shifted Poisson distributions having support in {10, 11, …} and with rate parameter equal to three.

In Fig. 37 we present the posterior distribution of 𝛼 and 𝛽 when a common model is adjusted for all the data, we have added the 
real values of each 𝛼𝑗 and 𝛽𝑗 . Fig. 38 presents a scatter plot of the simulated data adding the fitted model to the graph. Analogously 
to Fig. 37, Figs. 39 to 41 show the posterior distribution or credible intervals for the intercept and slope of the regression models 
considered in Section 5. We observe from these figures that, considering a single common slope for all the groups, it tends to 
underestimate the slope of some groups. In Fig. 42 we present the analogous result presented Fig. 20, which shows the posterior 
distributions of 𝜇 and 𝛾 for the Bayesian hierarchical regression model, allowing the intercepts and the slopes to share a common 
structure between groups. We observe that, for these data, both 𝜇 and 𝛾 tend to be underestimated.

In Fig. 43 we present the fitted model which introduces a hierarchical structure of the intercepts and slopes of the groups. In 
Fig. 44 we show the WAIC of the considered regression models, where the Bayesian hierarchical model presents the lowest WAIC 
between all the models, while a single common regression model presents the largest WAIC. Finally, in Fig. 45, we present the joint 
distribution for the intercepts and slopes, comparing their real simulated values against their estimated values for the four models 
35

considered in this article.
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Fig. 39. Credible intervals for each 𝛼𝑗 and 𝛽𝑗 when separate independent models are fitted for each group.

Fig. 40. Credible intervals for each 𝛼𝑗 and posterior distribution of 𝛽 considering the hierarchical model presented in Section 5.2 where the intercepts of the groups 
shared a common structure, but the slope is kept the same for all the groups.

Fig. 41. Credible intervals for each 𝛼𝑗 and 𝛽𝑗 considering the hierarchical model presented in Section 5.3 where the intercept and slope vary between the groups, but 
36

they share a common structure.
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Fig. 42. Posterior distributions of 𝜇 and 𝛾 considering the hierarchical model presented in Section 5.3.

Fig. 43. Bayesian hierarchical regression model.
37

Fig. 44. WAIC for the Bayesian hierarchical regression models.
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Fig. 45. Joint posterior of the slopes and intercepts. The three pictures present each pair (𝛼𝑗 , 𝛽𝑗 ) and compare them with the estimates from our different models. Upper 
left: Comparison with the posterior mean of the pair (𝛼, 𝛽) for the common regression model. Upper right: Comparison with the estimators for separate independent 
models for each region. Lower left: Comparison with the estimator of each.
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