Supplementary Material for: Regression with Missing Data, A Comparison Study of Techniques Based on Random Forests Irving Gómez-Méndez
1,* and Emilien $\rm Joly^2$ ¹Centro de Investigación en Matemáticas, AC (CIMAT) *Corresponding author: irving.gomez@cimat.mx ²Centro de Investigación en Matemáticas, AC (CIMAT), emilien.joly@cimat.mx ## 1 Evolution of the Missing Rate for the Other Data-Missing Mechanism Figure 1: Average MSE for the testing data set for each percentage of missingness, considering the MCAR mechanism. | | 0% | 5% | 10% | 20% | 40% | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 6.06 ± 0.06 | 6.40 ± 0.06 | 6.50 ± 0.06 | 6.66 ± 0.06 | 7.20 ± 0.06 | | Breiman | 6.06 ± 0.06 | 6.42 ± 0.06 | 6.51 ± 0.06 | 6.71 ± 0.06 | 7.06 ± 0.07 | | Ishioka | 6.06 ± 0.06 | 6.31 ± 0.06 | 6.41 ± 0.06 | 6.64 ± 0.06 | 6.88 ± 0.06 | | MissForest | 6.06 ± 0.06 | 6.43 ± 0.06 | 6.42 ± 0.05 | 6.45 ± 0.06 | 6.53 ± 0.05 | | MIA | 6.06 ± 0.06 | 6.29 ± 0.06 | 6.35 ± 0.06 | 6.55 ± 0.06 | 6.78 ± 0.06 | | Proposal | 6.06 ± 0.06 | 6.47 ± 0.05 | 6.53 ± 0.06 | 6.55 ± 0.06 | 6.78 ± 0.06 | Table 1: Average mean squared error and its standard error for the different methods, considering the MCAR case. | | 60% | 80% | 90% | 95% | |------------|-----------------|------------------|------------------|------------------| | Median | 8.14 ± 0.09 | 10.20 ± 0.14 | 12.36 ± 0.22 | 13.16 ± 0.22 | | Breiman | 7.53 ± 0.08 | 8.83 ± 0.13 | 10.63 ± 0.23 | 11.96 ± 0.28 | | Ishioka | 7.32 ± 0.07 | 8.03 ± 0.09 | 9.17 ± 0.14 | 10.45 ± 0.19 | | MissForest | 6.80 ± 0.07 | 7.26 ± 0.07 | 8.19 ± 0.13 | 9.48 ± 0.32 | | MIA | 7.15 ± 0.08 | 7.75 ± 0.09 | 8.79 ± 0.14 | 10.08 ± 0.20 | | Proposal | 6.96 ± 0.07 | 7.37 ± 0.06 | 7.95 ± 0.07 | 8.80 ± 0.10 | Table 2: (Cont.) Average mean squared error and its standard error for the different methods, considering the MCAR case. Figure 2: Average MSE for the testing data set for each percentage of missingness, considering the MAR1 mechanism. | | 0% | 5% | 10% | 20% | 40% | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 6.06 ± 0.06 | 6.54 ± 0.06 | 6.57 ± 0.05 | 6.78 ± 0.06 | 7.35 ± 0.07 | | Breiman | 6.06 ± 0.06 | 6.59 ± 0.06 | 6.64 ± 0.06 | 6.75 ± 0.06 | 7.10 ± 0.06 | | Ishioka | 6.06 ± 0.06 | 6.49 ± 0.06 | 6.56 ± 0.06 | 6.72 ± 0.06 | 7.12 ± 0.07 | | MissForest | 6.06 ± 0.06 | 6.41 ± 0.06 | 6.47 ± 0.06 | 6.49 ± 0.06 | 6.64 ± 0.06 | | MIA | 6.06 ± 0.06 | 6.41 ± 0.06 | 6.47 ± 0.06 | 6.63 ± 0.06 | 6.89 ± 0.07 | | Proposal | 6.06 ± 0.06 | 6.53 ± 0.06 | 6.56 ± 0.06 | 6.68 ± 0.06 | 6.97 ± 0.06 | Table 3: Average mean squared error and its standard error for the different methods, considering the MAR1 case. | | 60% | 80% | 90% | 95% | |------------|-----------------|------------------|------------------|------------------| | Median | 8.51 ± 0.09 | 10.65 ± 0.15 | 12.24 ± 0.21 | 14.17 ± 0.28 | | Breiman | 7.90 ± 0.10 | 9.45 ± 0.13 | 11.40 ± 0.26 | 13.70 ± 0.34 | | Ishioka | 7.75 ± 0.08 | 9.06 ± 0.12 | 10.23 ± 0.13 | 11.39 ± 0.20 | | MissForest | 6.97 ± 0.06 | 7.80 ± 0.09 | 8.70 ± 0.14 | 10.32 ± 0.35 | | MIA | 7.42 ± 0.08 | 8.46 ± 0.11 | 9.83 ± 0.14 | 11.13 ± 0.20 | | Proposal | 7.32 ± 0.07 | 8.11 ± 0.08 | 8.66 ± 0.08 | 9.22 ± 0.11 | Table 4: (Cont.) Average mean squared error and its standard error for the different methods, considering the MAR1 case. Figure 3: Average MSE for the testing data set for each percentage of missingness, considering the MAR2 mechanism. | | 0% | 5% | 10% | 20% | 40% | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 6.06 ± 0.06 | 6.52 ± 0.06 | 6.64 ± 0.06 | 6.75 ± 0.06 | 7.44 ± 0.07 | | Breiman | 6.06 ± 0.06 | 6.54 ± 0.07 | 6.59 ± 0.06 | 6.74 ± 0.07 | 7.23 ± 0.07 | | Ishioka | 6.06 ± 0.06 | 6.47 ± 0.06 | 6.57 ± 0.06 | 6.74 ± 0.07 | 7.16 ± 0.07 | | MissForest | 6.06 ± 0.06 | 6.46 ± 0.06 | 6.48 ± 0.06 | 6.48 ± 0.06 | 6.64 ± 0.06 | | MIA | 6.06 ± 0.06 | 6.41 ± 0.06 | 6.46 ± 0.06 | 6.58 ± 0.06 | 6.98 ± 0.07 | | Proposal | 6.06 ± 0.06 | 6.59 ± 0.06 | 6.62 ± 0.06 | 6.75 ± 0.07 | 7.05 ± 0.06 | Table 5: Average mean squared error and its standard error for the different methods, considering the MAR2 case. | | 60% | 80% | 90% | 95% | |------------|-----------------|------------------|------------------|------------------| | Median | 8.62 ± 0.10 | 10.45 ± 0.13 | 12.31 ± 0.22 | 13.32 ± 0.23 | | Breiman | 8.10 ± 0.09 | 9.49 ± 0.17 | 10.79 ± 0.20 | 12.74 ± 0.27 | | Ishioka | 7.97 ± 0.09 | 8.82 ± 0.11 | 9.66 ± 0.14 | 10.83 ± 0.16 | | MissForest | 7.08 ± 0.07 | 7.61 ± 0.08 | 8.34 ± 0.12 | 9.41 ± 0.25 | | MIA | 7.55 ± 0.09 | 8.45 ± 0.10 | 9.18 ± 0.11 | 10.63 ± 0.18 | | Proposal | 7.52 ± 0.07 | 7.99 ± 0.08 | 8.44 ± 0.10 | 8.93 ± 0.09 | Table 6: (Cont.) Average mean squared error and its standard error for the different methods, considering the MAR2 case. Figure 4: Average MSE for the testing data set for each percentage of missingness, considering the MAR3 mechanism. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 6.06 ± 0.06 | 6.54 ± 0.06 | 6.60 ± 0.05 | 6.96 ± 0.06 | 7.82 ± 0.08 | | Breiman | 6.06 ± 0.06 | 6.55 ± 0.06 | 6.67 ± 0.06 | 6.84 ± 0.06 | 7.51 ± 0.08 | | Ishioka | 6.06 ± 0.06 | 6.63 ± 0.06 | 6.67 ± 0.06 | 6.99 ± 0.07 | 7.73 ± 0.08 | | MissForest | 6.06 ± 0.06 | 6.74 ± 0.06 | 6.72 ± 0.06 | 6.78 ± 0.06 | 7.02 ± 0.06 | | MIA | 6.06 ± 0.06 | 6.52 ± 0.06 | 6.54 ± 0.06 | 6.81 ± 0.06 | 7.33 ± 0.06 | | Proposal | 6.06 ± 0.06 | 6.77 ± 0.06 | 6.86 ± 0.07 | 7.05 ± 0.07 | 7.55 ± 0.07 | Table 7: Average mean squared error and its standard error for the different methods, considering the MAR3 case. | | 60 | 80 | 90 | 95 | |------------|-----------------|------------------|------------------|------------------| | Median | 9.19 ± 0.11 | 10.85 ± 0.15 | 12.43 ± 0.20 | 14.05 ± 0.37 | | Breiman | 8.62 ± 0.10 | 10.00 ± 0.15 | 11.47 ± 0.23 | 13.93 ± 0.27 | | Ishioka | 8.64 ± 0.09 | 9.58 ± 0.10 | 10.65 ± 0.13 | 11.95 ± 0.22 | | MissForest | 7.56 ± 0.08 | 8.23 ± 0.11 | 9.00 ± 0.15 | 10.67 ± 0.37 | | MIA | 8.17 ± 0.08 | 9.11 ± 0.09 | 10.09 ± 0.12 | 11.50 ± 0.23 | | Proposal | 8.22 ± 0.08 | 8.92 ± 0.08 | 9.28 ± 0.10 | 9.42 ± 0.10 | Table 8: (Cont.) Average mean squared error and its standard error for the different methods, considering the MAR3 case. Figure 5: Average MSE for the testing data set for each percentage of missingness, considering the MAR4 mechanism. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 6.06 ± 0.06 | 6.48 ± 0.06 | 6.58 ± 0.06 | 6.83 ± 0.06 | 7.45 ± 0.07 | | Breiman | 6.06 ± 0.06 | 6.55 ± 0.06 | 6.58 ± 0.06 | 6.78 ± 0.06 | 7.22 ± 0.06 | | Ishioka | 6.06 ± 0.06 | 6.43 ± 0.06 | 6.48 ± 0.06 | 6.61 ± 0.06 | 7.07 ± 0.08 | | MissForest | 6.06 ± 0.06 | 6.61 ± 0.06 | 6.61 ± 0.06 | 6.65 ± 0.06 | 6.79 ± 0.06 | | MIA | 6.06 ± 0.06 | 6.54 ± 0.06 | 6.58 ± 0.06 | 6.71 ± 0.06 | 7.06 ± 0.06 | | Proposal | 6.06 ± 0.06 | 6.50 ± 0.06 | 6.53 ± 0.05 | 6.63 ± 0.06 | 6.83 ± 0.06 | Table 9: Average mean squared error and its standard error for the different methods, considering the MAR4 case. | | 60 | 80 | 90 | 95 | |------------|-----------------|------------------|------------------|------------------| | Median | 8.59 ± 0.10 | 10.25 ± 0.14 | 12.49 ± 0.23 | 13.31 ± 0.27 | | Breiman | 8.01 ± 0.09 | 8.98 ± 0.11 | 10.82 ± 0.25 | 12.72 ± 0.37 | | Ishioka | 7.57 ± 0.07 | 8.17 ± 0.08 | 9.11 ± 0.14 | 10.52 ± 0.15 | | MissForest | 7.09 ± 0.06 | 7.54 ± 0.06 | 8.25 ± 0.12 | 9.48 ± 0.37 | | MIA | 7.58 ± 0.08 | 8.12 ± 0.08 | 8.92 ± 0.13 | 10.19 ± 0.23 | | Proposal | 7.20 ± 0.06 | 7.62 ± 0.07 | 8.07 ± 0.07 | 8.71 ± 0.10 | Table 10: (Cont.) Average mean squared error and its standard error for the different methods, considering the MAR4 case. Figure 6: Average MSE for the testing data set for each percentage of missingness, considering the LOG mechanism. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 6.06 ± 0.06 | 6.45 ± 0.06 | 6.53 ± 0.07 | 6.74 ± 0.07 | 7.24 ± 0.08 | | Breiman | 6.06 ± 0.06 | 6.49 ± 0.06 | 6.54 ± 0.06 | 6.69 ± 0.07 | 7.09 ± 0.08 | | Ishioka | 6.06 ± 0.06 | 6.35 ± 0.06 | 6.42 ± 0.06 | 6.60 ± 0.06 | 6.92 ± 0.07 | | MissForest | 6.06 ± 0.06 | 6.37 ± 0.06 | 6.38 ± 0.06 | 6.42 ± 0.06 | 6.55 ± 0.06 | | MIA | 6.06 ± 0.06 | 6.36 ± 0.06 | 6.42 ± 0.06 | 6.53 ± 0.06 | 6.74 ± 0.07 | | Proposal | 6.06 ± 0.06 | 6.41 ± 0.06 | 6.47 ± 0.06 | 6.54 ± 0.06 | 6.79 ± 0.07 | Table 11: Average mean squared error and its standard error for the different methods, considering the LOG case. | | 60 | 80 | 90 | 95 | |------------|-----------------|------------------|------------------|------------------| | Median | 8.15 ± 0.08 | 10.12 ± 0.15 | 12.21 ± 0.22 | 13.42 ± 0.25 | | Breiman | 7.58 ± 0.08 | 8.96 ± 0.16 | 10.77 ± 0.24 | 12.48 ± 0.31 | | Ishioka | 7.34 ± 0.08 | 8.13 ± 0.10 | 9.39 ± 0.15 | 10.63 ± 0.19 | | MissForest | 6.76 ± 0.06 | 7.30 ± 0.07 | 8.25 ± 0.11 | 9.51 ± 0.25 | | MIA | 7.11 ± 0.08 | 7.84 ± 0.10 | 8.95 ± 0.15 | 10.22 ± 0.18 | | Proposal | 6.92 ± 0.07 | 7.36 ± 0.07 | 8.01 ± 0.08 | 8.88 ± 0.09 | Table 12: (Cont.) Average mean squared error and its standard error for the different methods, considering the LOG case. Figure 7: Average MSE for the testing data set for each percentage of missingness, considering the DEPY mechanism. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 6.06 ± 0.06 | 6.77 ± 0.06 | 6.82 ± 0.06 | 7.15 ± 0.07 | 7.87 ± 0.08 | | Breiman | 6.06 ± 0.06 | 6.75 ± 0.06 | 6.92 ± 0.07 | 7.05 ± 0.07 | 7.76 ± 0.08 | | Ishioka | 6.06 ± 0.06 | 6.70 ± 0.07 | 6.88 ± 0.07 | 7.26 ± 0.07 | 8.14 ± 0.09 | | MissForest | 6.06 ± 0.06 | 6.58 ± 0.06 | 6.57 ± 0.06 | 6.68 ± 0.06 | 6.87 ± 0.07 | | MIA | 6.06 ± 0.06 | 6.76 ± 0.07 | 6.93 ± 0.07 | 7.23 ± 0.08 | 7.80 ± 0.08 | | Proposal | 6.06 ± 0.06 | 6.59 ± 0.06 | 6.67 ± 0.06 | 6.86 ± 0.06 | 7.37 ± 0.07 | Table 13: Average mean squared error and its standard error for the different methods, considering the DEPY case. | | 60 | 80 | 90 | 95 | |------------|------------------|------------------|------------------|------------------| | Median | 9.86 ± 0.13 | 13.67 ± 0.20 | 15.43 ± 0.23 | 16.01 ± 0.26 | | Breiman | 9.41 ± 0.12 | 13.10 ± 0.20 | 15.46 ± 0.27 | 16.07 ± 0.25 | | Ishioka | 10.04 ± 0.13 | 12.18 ± 0.14 | 13.07 ± 0.19 | 13.57 ± 0.22 | | MissForest | 7.75 ± 0.08 | 9.32 ± 0.16 | 10.66 ± 0.31 | 12.62 ± 0.54 | | MIA | 9.47 ± 0.12 | 11.72 ± 0.15 | 12.86 ± 0.16 | 13.97 ± 0.27 | | Proposal | 8.57 ± 0.11 | 8.88 ± 0.10 | 9.05 ± 0.09 | 9.07 ± 0.09 | Table 14: (Cont.) Average mean squared error and its standard error for the different methods, considering the DEPY case. ## 2 BIAS | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|------------------|------------------|------------------|------------------| | Median | 0.00 ± 0.02 | -0.01 ± 0.02 | -0.01 ± 0.02 | -0.01 ± 0.02 | 0.01 ± 0.03 | | Breiman | 0.00 ± 0.02 | 0.01 ± 0.02 | -0.03 ± 0.02 | -0.04 ± 0.02 | -0.05 ± 0.03 | | Ishioka | 0.00 ± 0.02 | -0.05 ± 0.02 | -0.05 ± 0.02 | -0.04 ± 0.02 | -0.03 ± 0.02 | | MissForest | 0.00 ± 0.02 | 0.00 ± 0.02 | -0.02 ± 0.02 | -0.01 ± 0.02 | -0.01 ± 0.02 | | MIA | 0.00 ± 0.02 | 0.00 ± 0.02 | -0.02 ± 0.02 | 0.00 ± 0.02 | 0.00 ± 0.02 | | Proposal | 0.00 ± 0.02 | 0.00 ± 0.02 | 0.00 ± 0.02 | 0.00 ± 0.02 | 0.01 ± 0.02 | Table 15: Average bias and its standard error for the different methods, considering the MCAR case. Figure 8: Average Bias for the testing data set for each percentage of missingness, considering the MCAR mechanism | | 60 | 80 | 90 | 95 | |------------|------------------|------------------|------------------|------------------| | Median | -0.02 ± 0.03 | -0.05 ± 0.03 | -0.04 ± 0.05 | -0.07 ± 0.06 | | Breiman | -0.07 ± 0.03 | -0.08 ± 0.03 | -0.10 ± 0.03 | -0.10 ± 0.04 | | Ishioka | -0.05 ± 0.03 | -0.08 ± 0.03 | -0.09 ± 0.04 | -0.12 ± 0.05 | | MissForest | -0.01 ± 0.03 | -0.01 ± 0.04 | 0.07 ± 0.05 | -0.08 ± 0.07 | | MIA | -0.01 ± 0.03 | -0.05 ± 0.03 | -0.07 ± 0.05 | -0.09 ± 0.07 | | Proposal | 0.02 ± 0.03 | -0.06 ± 0.03 | -0.03 ± 0.04 | -0.01 ± 0.05 | Table 16: (Cont.) Average bias and its standard error for the different methods, considering the MCAR case. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|------------------|------------------|------------------|------------------| | Median | 0.00 ± 0.02 | -0.06 ± 0.02 | -0.08 ± 0.02 | -0.09 ± 0.02 | -0.20 ± 0.03 | | Breiman | 0.00 ± 0.02 | -0.04 ± 0.02 | -0.04 ± 0.02 | -0.05 ± 0.03 | -0.09 ± 0.03 | | Ishioka | 0.00 ± 0.02 | -0.04 ± 0.02 | -0.05 ± 0.02 | -0.07 ± 0.02 | -0.16 ± 0.03 | | MissForest | 0.00 ± 0.02 | -0.05 ± 0.02 | -0.06 ± 0.02 | -0.07 ± 0.02 | -0.13 ± 0.02 | | MIA | 0.00 ± 0.02 | -0.08 ± 0.02 | -0.12 ± 0.02 | -0.14 ± 0.03 | -0.26 ± 0.03 | | Proposal | 0.00 ± 0.02 | -0.08 ± 0.02 | -0.09 ± 0.02 | -0.10 ± 0.02 | -0.20 ± 0.03 | Table 17: Average bias and its standard error for the different methods, considering the MAR1 case. Figure 9: Average bias for the testing data set for each percentage of missingness, considering the MAR1 mechanism. | | 60 | 80 | 90 | 95 | |------------|------------------|------------------|------------------|------------------| | Median | -0.35 ± 0.03 | -0.67 ± 0.03 | -0.73 ± 0.05 | -0.82 ± 0.04 | | Breiman | -0.12 ± 0.03 | -0.13 ± 0.03 | -0.14 ± 0.03 | -0.21 ± 0.05 | | Ishioka | -0.29 ± 0.03 | -0.54 ± 0.03 | -0.59 ± 0.05 | -0.59 ± 0.05 | | MissForest | -0.22 ± 0.03 | -0.49 ± 0.04 | -0.51 ± 0.05 | -0.62 ± 0.07 | | MIA | -0.41 ± 0.03 | -0.77 ± 0.03 | -0.87 ± 0.05 | -0.94 ± 0.05 | | Proposal | -0.32 ± 0.03 | -0.42 ± 0.04 | -0.56 ± 0.03 | -0.57 ± 0.03 | Table 18: (Cont.) Average bias and its standard error for the different methods, considering the MAR1 case. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|------------------|------------------|------------------|------------------| | Median | 0.00 ± 0.02 | -0.07 ± 0.02 | -0.09 ± 0.02 | -0.15 ± 0.02 | -0.28 ± 0.02 | | Breiman | 0.00 ± 0.02 | -0.03 ± 0.02 | -0.05 ± 0.02 | -0.08 ± 0.02 | -0.08 ± 0.03 | | Ishioka | 0.00 ± 0.02 | -0.04 ± 0.02 | -0.06 ± 0.02 | -0.10 ± 0.02 | -0.22 ± 0.02 | | MissForest | 0.00 ± 0.02 | -0.05 ± 0.02 | -0.06 ± 0.02 | -0.10 ± 0.02 | -0.16 ± 0.02 | | MIA | 0.00 ± 0.02 | -0.08 ± 0.02 | -0.12 ± 0.02 | -0.17 ± 0.02 | -0.36 ± 0.02 | | Proposal | 0.01 ± 0.02 | -0.10 ± 0.02 | -0.11 ± 0.02 | -0.15 ± 0.02 | -0.25 ± 0.02 | Table 19: Average bias and its standard error for the different methods, considering the MAR2 case. Figure 10: Average bias for the testing data set for each percentage of missingness, considering the MAR2 mechanism. | | 60 | 80 | 90 | 95 | |------------|------------------|------------------|------------------|------------------| | Median | -0.44 ± 0.03 | -0.46 ± 0.05 | -0.49 ± 0.04 | -0.58 ± 0.03 | | Breiman | -0.10 ± 0.03 | -0.12 ± 0.03 | -0.14 ± 0.03 | -0.18 ± 0.03 | | Ishioka | -0.38 ± 0.03 | -0.38 ± 0.03 | -0.43 ± 0.04 | -0.48 ± 0.05 | | MissForest | -0.30 ± 0.03 | -0.36 ± 0.04 | -0.39 ± 0.05 | -0.41 ± 0.06 | | MIA | -0.52 ± 0.03 | -0.61 ± 0.03 | -0.64 ± 0.05 | -0.67 ± 0.06 | | Proposal | -0.28 ± 0.04 | -0.38 ± 0.02 | -0.43 ± 0.03 | -0.47 ± 0.04 | Table 20: (Cont.) Average bias and its standard error for the different methods, considering the MAR2 case. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|------------------|------------------|------------------|------------------| | Median | 0.00 ± 0.02 | -0.11 ± 0.02 | -0.15 ± 0.02 | -0.23 ± 0.02 | -0.44 ± 0.02 | | Breiman | 0.00 ± 0.02 | -0.04 ± 0.02 | -0.06 ± 0.02 | -0.08 ± 0.02 | -0.12 ± 0.02 | | Ishioka | 0.00 ± 0.02 | -0.05 ± 0.02 | -0.11 ± 0.02 | -0.19 ± 0.02 | -0.35 ± 0.03 | | MissForest | 0.00 ± 0.02 | -0.09 ± 0.02 | -0.13 ± 0.02 | -0.17 ± 0.02 | -0.29 ± 0.02 | | MIA | 0.00 ± 0.02 | -0.16 ± 0.02 | -0.18 ± 0.02 | -0.29 ± 0.02 | -0.52 ± 0.03 | | Proposal | 0.00 ± 0.02 | -0.17 ± 0.02 | -0.19 ± 0.02 | -0.27 ± 0.02 | -0.43 ± 0.02 | Table 21: Average bias and its standard error for the different methods, considering the MAR3 case. Figure 11: Average bias for the testing data set for each percentage of missingness, considering the MAR3 mechanism. | | 60 | 80 | 90 | 95 | |------------|------------------|------------------|------------------|------------------| | Median | -0.66 ± 0.03 | -0.82 ± 0.05 | -0.86 ± 0.03 | -0.87 ± 0.04 | | Breiman | -0.11 ± 0.03 | -0.11 ± 0.03 | -0.15 ± 0.03 | -0.23 ± 0.04 | | Ishioka | -0.56 ± 0.03 | -0.60 ± 0.03 | -0.60 ± 0.04 | -0.70 ± 0.05 | | MissForest | -0.52 ± 0.03 | -0.57 ± 0.04 | -0.71 ± 0.06 | -0.70 ± 0.06 | | MIA | -0.78 ± 0.03 | -1.00 ± 0.03 | -1.01 ± 0.05 | -1.13 ± 0.05 | | Proposal | -0.52 ± 0.04 | -0.60 ± 0.03 | -0.73 ± 0.03 | -0.70 ± 0.04 | Table 22: (Cont.) Average bias and its standard error for the different methods, considering the MAR3 case. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|------------------|-----------------|-----------------|-----------------| | Median | 0.00 ± 0.02 | 0.04 ± 0.02 | 0.09 ± 0.02 | 0.15 ± 0.02 | 0.14 ± 0.02 | | Breiman | 0.00 ± 0.02 | 0.09 ± 0.02 | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.12 ± 0.02 | | Ishioka | 0.00 ± 0.02 | -0.01 ± 0.02 | 0.05 ± 0.02 | 0.08 ± 0.02 | 0.09 ± 0.02 | | MissForest | 0.00 ± 0.02 | 0.05 ± 0.02 | 0.07 ± 0.02 | 0.08 ± 0.02 | 0.09 ± 0.02 | | MIA | 0.00 ± 0.02 | 0.12 ± 0.02 | 0.17 ± 0.02 | 0.24 ± 0.02 | 0.26 ± 0.02 | | Proposal | 0.00 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.13 ± 0.02 | 0.13 ± 0.02 | Table 23: Average bias and its standard error for the different methods, considering the MAR4 case. Figure 12: Average bias for the testing data set for each percentage of missingness, considering the MAR4 mechanism. | | 60 | 80 | 90 | 95 | |------------|-----------------|-----------------|-----------------|-----------------| | Median | 0.14 ± 0.03 | 0.15 ± 0.03 | 0.15 ± 0.04 | 0.26 ± 0.05 | | Breiman | 0.11 ± 0.03 | 0.11 ± 0.03 | 0.10 ± 0.03 | 0.10 ± 0.04 | | Ishioka | 0.10 ± 0.03 | 0.11 ± 0.03 | 0.11 ± 0.04 | 0.12 ± 0.06 | | MissForest | 0.10 ± 0.03 | 0.10 ± 0.04 | 0.14 ± 0.05 | 0.23 ± 0.07 | | MIA | 0.24 ± 0.03 | 0.25 ± 0.04 | 0.26 ± 0.05 | 0.30 ± 0.06 | | Proposal | 0.13 ± 0.03 | 0.13 ± 0.03 | 0.13 ± 0.04 | 0.16 ± 0.03 | Table 24: (Cont.) Average bias and its standard error for the different methods, considering the MAR4 case. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|------------------|------------------|------------------|------------------| | Median | 0.00 ± 0.02 | 0.01 ± 0.02 | 0.00 ± 0.02 | -0.01 ± 0.02 | -0.05 ± 0.02 | | Breiman | 0.00 ± 0.02 | 0.01 ± 0.02 | 0.01 ± 0.02 | -0.01 ± 0.02 | -0.03 ± 0.03 | | Ishioka | 0.00 ± 0.02 | 0.01 ± 0.02 | 0.00 ± 0.02 | -0.02 ± 0.02 | -0.03 ± 0.03 | | MissForest | 0.00 ± 0.02 | 0.00 ± 0.02 | 0.00 ± 0.02 | 0.00 ± 0.02 | -0.04 ± 0.02 | | MIA | 0.00 ± 0.02 | 0.03 ± 0.02 | 0.02 ± 0.02 | -0.01 ± 0.03 | -0.07 ± 0.03 | | Proposal | 0.01 ± 0.02 | -0.01 ± 0.02 | -0.01 ± 0.02 | -0.03 ± 0.02 | -0.08 ± 0.02 | Table 25: Average bias and its standard error for the different methods, considering the LOG case. Figure 13: Average bias for the testing data set for each percentage of missingness, considering the LOG mechanism. | | 60 | 80 | 90 | 95 | |------------|------------------|------------------|------------------|------------------| | Median | -0.09 ± 0.03 | -0.19 ± 0.03 | -0.26 ± 0.05 | -0.28 ± 0.05 | | Breiman | -0.03 ± 0.03 | -0.04 ± 0.03 | -0.07 ± 0.03 | -0.13 ± 0.04 | | Ishioka | -0.08 ± 0.03 | -0.17 ± 0.03 | -0.23 ± 0.05 | -0.28 ± 0.05 | | MissForest | -0.06 ± 0.03 | -0.11 ± 0.03 | -0.26 ± 0.06 | -0.29 ± 0.07 | | MIA | -0.10 ± 0.03 | -0.24 ± 0.04 | -0.32 ± 0.05 | -0.35 ± 0.06 | | Proposal | -0.09 ± 0.03 | -0.16 ± 0.03 | -0.25 ± 0.04 | -0.22 ± 0.04 | Table 26: (Cont.) Average bias and its standard error for the different methods, considering the LOG case. | | 0 | 5 | 10 | 20 | 40 | |------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Median | 0.00 ± 0.02 | 0.11 ± 0.02 | 0.12 ± 0.02 | 0.19 ± 0.02 | 0.37 ± 0.02 | | Breiman | 0.00 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.07 ± 0.02 | 0.08 ± 0.03 | | Ishioka | 0.00 ± 0.02 | 0.06 ± 0.02 | 0.06 ± 0.02 | 0.12 ± 0.02 | 0.23 ± 0.03 | | MissForest | 0.00 ± 0.02 | 0.06 ± 0.02 | 0.05 ± 0.02 | 0.08 ± 0.02 | 0.11 ± 0.02 | | MIA | 0.00 ± 0.02 | 0.37 ± 0.02 | 0.40 ± 0.02 | 0.54 ± 0.02 | 0.78 ± 0.03 | | Proposal | 0.00 ± 0.02 | 0.20 ± 0.02 | 0.22 ± 0.02 | 0.29 ± 0.02 | 0.34 ± 0.04 | Table 27: Average bias and its standard error for the different methods, considering the DEPY case. Figure 14: Average bias for the testing data set for each percentage of missingness, considering the DEPY mechanism. | | 60 | 80 | 90 | 95 | |------------|-----------------|-----------------|-----------------|-----------------| | Median | 0.67 ± 0.03 | 1.03 ± 0.03 | 1.05 ± 0.03 | 1.04 ± 0.05 | | Breiman | 0.12 ± 0.03 | 0.14 ± 0.03 | 0.17 ± 0.03 | 0.24 ± 0.04 | | Ishioka | 0.45 ± 0.03 | 0.69 ± 0.03 | 0.75 ± 0.03 | 0.74 ± 0.04 | | MissForest | 0.20 ± 0.03 | 0.39 ± 0.03 | 0.39 ± 0.03 | 0.48 ± 0.06 | | MIA | 1.13 ± 0.03 | 1.44 ± 0.03 | 1.38 ± 0.03 | 1.29 ± 0.04 | | Proposal | 0.44 ± 0.03 | 0.55 ± 0.04 | 0.69 ± 0.03 | 0.77 ± 0.03 | Table 28: (Cont.) Average bias and its standard error for the different methods, considering the DEPY case.